Skip to main content
Log in

Evolution of a heavy rigid body rotation under the action of unsteady restoring and perturbation torques

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The paper develops an approximate solution to the system of Euler’s equations with additional perturbation term for dynamically symmetric rotating rigid body. The perturbed motions of a rigid body, close to Lagrange’s case, under the action of restoring and perturbation torques that are slowly varying in time are investigated. We describe an averaging procedure for slow variables of a rigid body perturbed motion, similar to Lagrange top. Conditions for the possibility of averaging the equations of motion with respect to the nutation phase angle are presented. The averaging technique reduces the system order from 6 to 3 and does not contain fast oscillations. An example of motion of the body using linearly dissipative torques is worked out to demonstrate the use of general equations. The numerical integration of the averaged system of equations is conducted of the body motion. The graphical presentations of the solutions are represented and discussed. A new class of rotations of a dynamically symmetric rigid body about a fixed point with account for a nonstationary perturbation torque, as well as for a restoring torque that slowly varies with time, is studied. The main objective of this paper is to extend the previous results for problem of the dynamic motion of a symmetric rigid body subjected to perturbation and restoring torques. The proposed averaging method is implemented to receive the averaging system of equations of motion. The graphical representations of the solutions are presented and discussed. The attained results are a generalization of our former works where µ and Mi are independent of the slow time τ and Mi depend on the slow time only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chernousko, F.L., Akulenko, L.D., Leshchenko, D.D.: Evolution of Motions of a Rigid Body About its Center of Mass. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53928-7

    Book  MATH  Google Scholar 

  2. Mac Millan, W.D.: Theoretical Mechanics. Dynamics of Rigid Bodies. McGraw-Hill, New York (1936)

    Google Scholar 

  3. Magnus, K.: Kreisel. Theorie and Anwendungen. Springer, Berlin (1971)

    MATH  Google Scholar 

  4. Wittenburg, J.: Dynamics of Multibody Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  5. Aslanov, V.S.: Rigid Body Dynamics for Space Applications. Butterworth Heinemann, Oxford (2017)

    MATH  Google Scholar 

  6. Akulenko, L.D., Leshchenko, D.D., Chernousko, F.L.: Perturbed motions of a rigid body, close to the Lagrange case. J. Appl. Math. Mech. 43(5), 829–837 (1979). https://doi.org/10.1016/0021-8928(79)90171-0

    Article  MATH  Google Scholar 

  7. Akulenko, L.D., Zinkevich, YaS, Kozachenko, T.A., Leshchenko, D.D.: The evolution of motions of a rigid body close to the Lagrange case under the action of an unsteady torque. J. Appl. Math. Mech. 82(2), 79–84 (2017). https://doi.org/10.1016/j.jappmathmech.2017.08.001

    Article  MathSciNet  MATH  Google Scholar 

  8. Akulenko, L.D., Leshchenko, D.D., Chernousko, F.L.: Perturbed motions of a rigid body that are close to regular precession. Mech. Solids 21(5), 1–8 (1986)

    Google Scholar 

  9. Akulenko, L.D., Kozachenko, T.A., Leshchenko, D.D.: Rotations of a rigid body under the action of unsteady restoring and perturbation torques. Mech. Solids 38(2), 1–7 (2003)

    Google Scholar 

  10. Akulenko, L., Leshchenko, D., Kushpil, T., Timoshenko, I.: Problems of evolution of rotations of a rigid body under the action of perturbing moments. Multibody Syst. Dyn. 6(1), 3–16 (2001). https://doi.org/10.1023/A:1011479907154

    Article  MATH  Google Scholar 

  11. Ershkov, S.V., Leshchenko, D.: On a new type of solving procedure for Euler–Poisson equations (rigid body rotation over a fixed point). Acta Mech. 230(3), 871–883 (2019). https://doi.org/10.1007/s00707-018-2328-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Simpson, H.C., Gunzburger, M.D.: A two time scale analysis of gyroscopic motion with friction. Z. Angew. Math. Phys. 37(6), 867–894 (1986). https://doi.org/10.1007/BF00953678

    Article  MathSciNet  MATH  Google Scholar 

  13. Sazonov, V.V., Sidorenko, V.V.: The perturbed motions of a solid close to regular Lagrangian precessions. J. Appl. Math. Mech. 54(6), 781–787 (1990). https://doi.org/10.1016/0021-8928(90)90010-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Sidorenko, V.V.: Capture and escape from resonance in the dynamics of the rigid body in viscous medium. J. Nonlinear Sci. 4(1), 35–57 (1994). https://doi.org/10.1007/BF02430626

    Article  MathSciNet  MATH  Google Scholar 

  15. Sidorenko, V.V.: One class of motions for a satellite carrying a strong magnet. Cosmic Res. 40(2), 133–141 (2002). https://doi.org/10.1023/A:1015145319592

    Article  Google Scholar 

  16. Amer, W.S.: The dynamical motion of a gyroscope subjected to applied moments. Results Phys. 12, 1429–1435 (2019). https://doi.org/10.1016/j.rinp.2019.01.037

    Article  Google Scholar 

  17. Abady, I.M., Amer, T.S.: On the motion of a gyro in the presence of a Newtonian force field and applied moments. Math. Mech. Solids 23(9), 1263–1273 (2018). https://doi.org/10.1177/1081286517716734

    Article  MathSciNet  MATH  Google Scholar 

  18. Amer, T.S.: On the motion a gyrostat similar to Lagrange’s gyroscope under the influence of a gyrostatic moment vector. Nonlinear Dyn. 54(3), 249–262 (2008). https://doi.org/10.1007/s11071-007-9327-x

    Article  MathSciNet  MATH  Google Scholar 

  19. Lyubimov, V.V.: External stability of resonances in the motion of an asymmetric rigid body with a strong magnet in the geomagnetic field. Mech. Solids 45(1), 10–21 (2010). https://doi.org/10.3103/S0025654410010036

    Article  Google Scholar 

  20. Doroshin, A.V.: Analytical solutions for dynamics of dual-spin spacecraft and gyrostat-satellites under magnetic attitude control in omega-regimes. Int. J. Non-linear Mech. 96, 64–74 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.08.004

    Article  Google Scholar 

  21. Zabolotnov, YuM: Resonant motions of the statically stable Lagrange spinning top. Mech. Solids 54(5), 652–668 (2019). https://doi.org/10.3103/S0025654419050212

    Article  MATH  Google Scholar 

  22. Mc Gill, D.J., Long III, L.S.: The effect of viscous damping on spin stability of a rigid body with a fixed point. Trans. ASME J. Appl. Mech. 44(2), 349–352 (1977). https://doi.org/10.1115/1.3424056

    Article  Google Scholar 

  23. Karapetyan, A.V.: Steady motions of forced Lagrange’s top in a resisting medium. Mosc. Univ. Mech. Bull. 55(5), 11–15 (2000)

    MATH  Google Scholar 

  24. Wan, C.J., Tsiotras, P., Coppola, V.T., Bernstein, D.S.: Global asymptotic stabilization of a spinning top with torque actuators using stereographic projection. Dyn. Control 7, 215–233 (1997)

    Article  MathSciNet  Google Scholar 

  25. Coppola, V.T.: The method of averaging for Euler’s equations of rigid body motion. Nonlinear Dyn. 14(4), 295–308 (1997). https://doi.org/10.1023/A:1008215327247

    Article  MathSciNet  MATH  Google Scholar 

  26. Alexandrov, AYu., Tikhonov, A.A.: Attitude stabilization of a rigid body under the action of a vanishing control torque. Nonlinear Dyn. 93(2), 285–293 (2018). https://doi.org/10.1007/s11071-4191-4

    Article  MATH  Google Scholar 

  27. Holmes, P.J., Marsden, J.E.: Horseshoes and Arnold diffusion for Hamiltonian systems on Lie groups. Indiana Univ. Math. J. 32(2), 273–309 (1983)

    Article  MathSciNet  Google Scholar 

  28. Routh, E.J.: Advanced Dynamics of a System of Rigid Bodies. Dover, New York (2005)

    Google Scholar 

  29. Provatidis, C.G.: Revisiting the spinning top. Int. J. Mater. Mech. Eng. 1, 71–88 (2012)

    Google Scholar 

  30. Bogoliubov, N.N., Mitropolsky, YuA: Asymptotic Methods in the Theory of Non-linear Oscillations. Gordon and Breach Science Publishers, New York (1961)

    Google Scholar 

  31. Gradshtein, I.S., Ryzhik, I.M.: Tables of Integrals, Sums, Series and Products. Academic Press, San Diego (2000)

    Google Scholar 

  32. Tatarinov, YaV: Frequency nondegeneracy of a Lagrange top and a balanced gyroscope in a gimbal. Mech. Solids 22(4), 30–36 (1987)

    Google Scholar 

  33. Zhuravlev, V.F., Petrov, A.G.: The Lagrange top and the Foucault pendulum in observed variables. Dokl. Phys. 59(1), 35–39 (2014). https://doi.org/10.1134/S102833581401008X

    Article  MATH  Google Scholar 

Download references

Acknowledgements

In this research, Dmytro Leshchenko is responsible for the general ansatz and solving procedure and survey in the literature on the problem under consideration. Sergey Ershkov is responsible for theoretical investigations and for analysis of obtained results. Tetiana Kozachenko is responsible for receiving the averaged system of equations of motion and for the plots and numerical solutions for test example.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmytro Leshchenko.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding publication of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leshchenko, D., Ershkov, S. & Kozachenko, T. Evolution of a heavy rigid body rotation under the action of unsteady restoring and perturbation torques. Nonlinear Dyn 103, 1517–1528 (2021). https://doi.org/10.1007/s11071-020-06195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06195-0

Keywords

Navigation