Skip to main content
Log in

Appearance of “β-Like” Circular Dichroism Spectra on Protein Aggregation That Is not Accompanied by Transition to β-Structure

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

CD spectra in the 200 to 250 nm spectral region for small ordered aggregates (trimers-pentamers) of tobacco mosaic virus (TMV) coat protein (CP) and for long virus-like helical aggregates of TMV CP were compared. It was found that small (4S) TMV CP aggregates have a CD spectrum typical of a protein with high α-helix content, which agrees well with results of X-ray diffraction studies. But in the long helical aggregates (and in the TMV virions) TMV CP gives “β-like” CD spectra similar to those of many other aggregated proteins. From X-ray diffraction data, it is well known that TMV CP subunits do not change their secondary or tertiary structure on assembly into virions or the helical repolymerized protein. Thus, the change in the shape of 200 to 250 nm CD spectra cannot be employed as the sole criterion of the conversion of a protein to β-structure in the course of aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Wetzel, R. (1992) in Stability of Protein Pharmaceuticals. Part B. In vivo Pathways of Degradation and Strategies for Protein Stabilization (Ahern, T. J., and Manning, M. C., eds.) Vol. 3, Plenum Press, New York, pp. 43–88.

    Google Scholar 

  2. Fink, A. L. (1998) Folding and Design, 3, R9-R23.

    PubMed  Google Scholar 

  3. Kurganov, B. I. (1998) Biochemistry (Moscow), 63, 364–366.

    Google Scholar 

  4. Prusiner, S. B. (1998) Proc. Natl. Acad. Sci. USA, 95, 13363–13383.

    PubMed  Google Scholar 

  5. Horiuchi, M., and Caughey, B. (1999) Structure. Fold. Des., 7, R231-R240.

    PubMed  Google Scholar 

  6. Georgalis, Y., Starikov, E. B., Hollenbach, B., Lurz, R., Scherzinger, E., Saenger, W., Lehrach, H., and Wanker, E. E. (1998) Proc. Natl. Acad. Sci. USA, 95, 6118–6121.

    PubMed  Google Scholar 

  7. Price, W. S., Tsuchiya, F., and Arata, Y. (2001) Biophys. J., 80, 1585–1590.

    PubMed  Google Scholar 

  8. Jackson, G. S., Hosszu, L. L., Power, A., Hill, A. F., Kenney, J., Saibil, H., Craven, C. J., Waltho, J. P., and Clarke, A. R. (1999) Science, 283, 1935–1937.

    PubMed  Google Scholar 

  9. Chiti, F., Webster, P., Taddei, N., Clark, A., Stefani, M., Ramponi, G., and Dobson, C. M. (1999) Proc. Natl. Acad. Sci. USA, 96, 3590–3594.

    PubMed  Google Scholar 

  10. Biere, A. L., Wood, S. J., Wypych, J., Steavenson, S., Jiang, Y., Anafi, D., Jacobsen, F. W., Jarosinski, M. A., Wu, G. M., Louis, J. C., Martin, F., Narhi, L. O., and Citron, M. (2000) J. Biol. Chem., 275, 34574–34579.

    PubMed  Google Scholar 

  11. Ohnishi, S., Koide, A., and Koide, S. (2000) J. Mol. Biol., 301, 477–489.

    PubMed  Google Scholar 

  12. Balbach, J. J., Ishii, Y., Antzutkin, O. N., Leapman, R. D., Rizzo, N. W., Dyda, F., Reed, J., and Tycko, R. (2000) Biochemistry, 39, 13748–13759.

    PubMed  Google Scholar 

  13. Sunde, M., Serpell, L. C., Bartlam, M., Fraser, P. E., Pepys, M. B., and Blake, C. C. (1997) J. Mol. Biol., 273, 729–739.

    PubMed  Google Scholar 

  14. Dobrov, E. N., Abu-Eid, M. M., Solovyev, A. G., Kust, S. V., and Novikov, V. K. (1997) J. Protein Chem., 16, 27–36.

    PubMed  Google Scholar 

  15. Fraenkel-Conrat, H. (1957) Virology, 1, 1–4.

    Google Scholar 

  16. Dobrov, E. N., Kust, S. V., Yakovleva, O. A., and Tikchonenko, T. I. (1977) Biochim. Biophys. Acta, 475, 623–637.

    PubMed  Google Scholar 

  17. Butler, P. J. G. (1986) J. Gen. Virol., 65, 253–279.

    Google Scholar 

  18. Bloomer, A. C., and Butler, P. J. G. (1986) in The Plant Viruses (van Regenmortel, M. N. V., and Fraenkel-Conrat, H., eds.) Vol. 2, Plenum Press, New York, pp. 19–57.

    Google Scholar 

  19. Vogel, D., and Jaenicke, R. (1976) Eur. J. Biochem., 61, 423–431.

    PubMed  Google Scholar 

  20. Orlov, V. N., Arutyunyan, A. M., Kust, S. V., Litmanovich, E. A., Drachev, V. A., and Dobrov, E. N. (2001) Biochemistry (Moscow), 66, 154–162.

    Google Scholar 

  21. Greenfield, N., and Fasman, G. D. (1969) Biochemistry, 12, 1290–1299.

    Google Scholar 

  22. Bloomer, A. C., Champness, J. N., Bricogne, G., Staden, R., and Klug, A. (1978) Nature, 276, 362–368.

    Google Scholar 

  23. Namba, K., Pattanayek, R., and Stubbs, G. (1989) J. Mol. Biol., 208, 307–325.

    PubMed  Google Scholar 

  24. Bhyravbhatla, B., Watowich, S. J., and Caspar, D. L. (1998) Biophys. J., 74, 604–615.

    PubMed  Google Scholar 

  25. Raghavendra, K., Adams, M. L., and Schuster, T. M. (1985) Biochemistry, 24, 3298–3304.

    PubMed  Google Scholar 

  26. Butler, P. J., Bloomer, A. C., and Finch, J. T. (1992) J. Mol. Biol., 224, 381–394.

    PubMed  Google Scholar 

  27. Mandelkow, E., Stubbs, G., and Warren, S. (1981) J. Mol. Biol., 152, 375–386.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arutyunyan, A.M., Rafikova, E.R., Drachev, V.A. et al. Appearance of “β-Like” Circular Dichroism Spectra on Protein Aggregation That Is not Accompanied by Transition to β-Structure. Biochemistry (Moscow) 66, 1378–1380 (2001). https://doi.org/10.1023/A:1013337930104

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013337930104

Navigation