Skip to main content
Log in

Hydroxo and Chloro Complexes/Ion Interactions of Hf4+ and the Solubility Product of HfO2(am)

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solubility of HfO2(am) was determined at different equilibration periods from the over- and undersaturation directions, in very acidic to basic solutions (0.1 m HCl to 3.2 m NaOH), and in NaCl solutions ranging in concentrations from very dilute to as high as 5.59 m and in a \({\text{p}}C_{{\text{H}} + }\) range from 1 to 4 to obtain reliable thermodynamic data for the Hf4+–Cl–Na+–H+–OH–H2O system. The studies indicate that equilibrium is reached rapidly (<5 days) and that HfO2(am) solubility shows amphoteric behavior. The solubility data obtained in this study, along with the data reported in the literature, at NaOH molalities as high as 21.7 m were interpreted using the ion-interaction model of Pitzer. The log K 0 for the solubility of HfO2(am) [HfO2(am) + 2H2O ⇆ Hf4+ + 4OH] was determined to be −55.1 ± 0.7. The log K 0 values for the formation of HfOH3+, Hf(OH)0 4, Hf(OH)5 , and Hf(OH)6 2− according to the reaction (Hf4+ + xOH ⇆ Hf(OH)4−x x) were determined to be 13.8, <44.8, 49.7 ± 0.2, and 51.2 ± 0.2, respectively. The thermodynamic model developed in this study is valid for a wide range of conditions (as high as 0.1 m HCl, 21.7 m NaOH, and 5.59 m NaCl). The binary ion-interaction parameters for Hf4+–Cl, HfOH3+–Cl, and Hf(OH)2− 6–Na+ were determined in this study to accurately define the observed solubility behavior of hafnium in various systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. T. Weger, D. Rai, N. J. Hess, and B. P. McGrail, Solubility and Aqueous-Phase Reactions of Gadolinium in the K +–Na+i–CO 2-3 –OH–H2O System PNNL-11864 (Pacific Northwest National Laboratory, Richland, Washington, 1998).

    Google Scholar 

  2. E. M. Larsen and A. M. Gammill, J. Amer. Chem. Soc. 72, 3615 (1950).

    Google Scholar 

  3. E. M. Larsen and P. Wang, J. Amer. Chem. Soc. 76, 6223 (1954).

    Google Scholar 

  4. D. B. Copley and S. Y. Tyree, Jr., Inorg. Chem. 7/7, 1472 (1968).

    Google Scholar 

  5. J. S. Johnson, K. A. Kraus, and R. W. Holmberg, J. Amer. Chem. Soc. 78, 26 (1956).

    Google Scholar 

  6. E. H. Huffman, G. M. Iddings, and R. C. Lilly, J. Amer. Chem. Soc. 73, 4474 (1951).

    Google Scholar 

  7. J. S. Johnson and K. A. Kraus, J. Amer. Chem. Soc. 78, 3937 (1956).

    Google Scholar 

  8. A. J. Zielen and R. E. Connick, J. Amer. Chem. Soc. 78, 5785 (1956).

    Google Scholar 

  9. E. N. Lebedeva, S. S. Korovin, and A. M. Rozen, Russ. J. Inorg. Chem. 9/7, 944 (1964).

    Google Scholar 

  10. C. F. Baes, Jr. and R. F. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1976).

    Google Scholar 

  11. B. Noren, Acta Chem. Scandi. 27, 1369 (1973).

    Google Scholar 

  12. G. D. M. Cerefìce, K. Noyes, and K. Czerwinski, Mat. Res. Soc. Symp. Proc. 556, 1025 (1999).

    Google Scholar 

  13. P. N. Kovalenko and K. N. Bagdasarov, Russ. J. Inorg. Chem. 7/18, 913 (1962).

    Google Scholar 

  14. V. P. Vasil'ev, A. I. Lytkin, and N. V. Chernyavskaya, J. Thermal Analy. Calorimetry 55, 1003 (1999).

    Google Scholar 

  15. L. G. M. Baas Becking, I. R. Kaplan, and D. A. Moore, J. Geol. 68, 243 (1960).

    Google Scholar 

  16. V. M. Peshkova and P. Pen, Vestn. Mosk. Univ., Ser. II Khim. 18/1, 40 (1963).

    Google Scholar 

  17. R. G. Deshpande, P. K. Khopkar, C. L. Rao, and H. D. Sharma, J. Inorg. Nucl. Chem. 27, 2171 (1965).

    Google Scholar 

  18. J. Hála and D. Pohanková, J. Inorg. Nucl. Chem. 29, 2983 (1967).

    Google Scholar 

  19. I. N. Marov and D. I. Ryabchikov, Zh. Neorg. Khim. 7, 1036 (1962).

    Google Scholar 

  20. A. N. Ermakov, L. N. Marov, and G. A. Evtikova, Russ. J. Inorg. Chem. 12/12, 1784 (1967).

    Google Scholar 

  21. D. Rai, A. R. Felmy, S. P. Juracich, and L. Rao, Estimating the Hydrogen Ion Concentration in Concentrated NaCl and Na 2SO4 Electrolytes, SAND94-1949 (Sandia National Laboratories, Albuquerque, New Mexico, 1995).

    Google Scholar 

  22. I. A. Sheka and Ts. V. Pevzner, Russ. J. Inorg. Chem. 5/10, 1119 (1960).

    Google Scholar 

  23. D. Rai, N. J. Hess, A. R. Felmy, D. A. Moore, M. Yui, and P. Vitorge, Radiochim. Acta 86, 89 (1999).

    Google Scholar 

  24. R. Ruh and P. W. R. Corfield, Amer. Ceramic Soc. 53, 119 (1970).

    Google Scholar 

  25. A. L. Ankudinov, Ph.D. Thesis, University of Washington, Washington, 1996.

    Google Scholar 

  26. J. J. Rehr, J. Leon de Mustre, S. I. Zabinsky, and R. C. Albers, J. Amer. Chem. Soc. 113, 5135 (1991).

    Google Scholar 

  27. K. S. Pitzer and G. Mayorga, J. Phys. Chem. 77, 2300 (1973).

    Google Scholar 

  28. K. S. Pitzer, in Activity Coefficients in Electrolyte Solutions, K. S. Pitzer, ed. (CRC Press, Boca Raton, FL, 1991) Chapt. 3, pp. 75–153.

    Google Scholar 

  29. A. R. Felmy and J. H. Weare, Geochim. Cosmochim. Acta 50, 2771 (1986).

    Google Scholar 

  30. A. R. Felmy, D. Rai, J. A. Schramke, and J. L. Ryan, Radiochim. Acta 48, 29 (1989).

    Google Scholar 

  31. S. M. Sterner, A. R. Felmy, J. R. Rustad, and K. S. Pitzer, Thermodynamic Analysis of Aqueous Solutions Using INSIGHT, PNWD-SA-4436 (Pacific Northwest National Laboratory, Richland, Washington, 1997).

    Google Scholar 

  32. A. R. Felmy, D. Rai, S. M. Sterner, M. J. Mason, N. J. Hess, and S. D. Conradson, J. Solution Chem. 26, 233 (1997).

    Google Scholar 

  33. D. Rai, A. R. Felmy, S. M. Sterner, D. A. Moore, M. J. Mason, and C. F. Novak, Radiochim. Acta 79, 239 (1997).

    Google Scholar 

  34. D. Rai, A. R. Felmy, N. J. Hess, D. A. Moore, and M. Yui, Radiochim. Acta 82, 17 (1998).

    Google Scholar 

  35. D. Rai, A. R. Felmy, N. J. Hess, D. A. Moore, and M. Yui, Radiochim. Acta 84, 159 (1999).

    Google Scholar 

  36. D. Rai, A. R. Felmy, and J. L. Ryan, Inorg. Chem. 29, 260 (1990).

    Google Scholar 

  37. I. J. Grenthe, R. J. Fuger, M. Konigs, R. J. Lemire, A. B. Muller, C. Nguyen-Trung, and H. Wannter, Chemical Thermodynamics of Uranium, Vol. 1 (Elsevier, New York, 1992).

    Google Scholar 

  38. C. E. Harvie, N. Moller, and J. H. Weare, Geochim. Cosmochim. Acta 48, 723 (1984).

    Google Scholar 

  39. D. Rai, A. R. Felmy, and R. W. Szelmeczka, J. Solution Chem. 20/4, 375 (1991).

    Google Scholar 

  40. R. A. Day, Jr., R. N. Wilhite, and F. D. Hamilton, J. Amer. Chem. Soc. 77, 3180 (1955).

    Google Scholar 

  41. F. T. Bunus, J. Inorg. Nucl. Chem. 36, 917 (1974).

    Google Scholar 

  42. J. Sobkowski, J. Inorg. Nucl. Chem. 23, 81 (1961).

    Google Scholar 

  43. R. C. Weast, Handbook of Chemistry and Physics (CRC Press, Cleveland, OH, 1972–1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, D., Xia, Y., Hess, N.J. et al. Hydroxo and Chloro Complexes/Ion Interactions of Hf4+ and the Solubility Product of HfO2(am). Journal of Solution Chemistry 30, 949–967 (2001). https://doi.org/10.1023/A:1013337925441

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013337925441

Navigation