Skip to main content
Log in

Kinetic Analysis of Maturation and Denaturation of DsRed, a Coral-Derived Red Fluorescent Protein

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The red fluorescent protein DsRed recently cloned from Discosoma coral, with its significantly red-shifted excitation and emission maxima (558 and 583 nm, respectively), has attracted great interest because of its spectral complementation to other fluorescent proteins, including the green fluorescent protein and its enhanced mutant EGFP. We demonstrated that the much slower DsRed fluorescence development could be described by a three-step kinetic model, in contrast to the fast EGFP maturation, which was fitted by a one-step model. At pH below 5.0 DsRed fluorescence gradually decreased, and the rate and degree of this fluorescence inactivation depended on the pH value. The kinetics of fluorescence inactivation under acidic conditions was fitted by a two-exponential function where the initial inactivation rate was proportional to the fourth power of proton concentration. Subsequent DsRed alkalization resulted in partial fluorescence recovery, and the rate and degree of such recovery depended on the incubation time in the acid. Recovery kinetics had a lag-time and was fitted minimally by three exponential functions. The DsRed absorbance and circular dichroism spectra revealed that the fluorescence loss was accompanied by protein denaturation. We developed a kinetic mechanism for DsRed denaturation that includes consecutive conversion of the initial state of the protein, protonated by four hydrogen ions, to the denatured one through three intermediates. The first intermediate still emits fluorescence, and the last one is subjected to irreversible inactivation. Because of tight DsRed tetramerization we have suggested that obligatory protonation of each monomer results in the fluorescence inactivation of the whole tetramer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Tsien, R. Y. (1998) Annu. Rev. Biochem., 67, 509–544.

    PubMed  Google Scholar 

  2. Cody, C. W., Prasher, D. C., Westler, W. M., Prendergast, F. G., and Ward, W. W. (1993) Biochemistry, 32, 1212–1218.

    PubMed  Google Scholar 

  3. Niwa, G., Inouye, S., Hirano, T., Matsuno, T., Kojima, S., Massayuki, K., Ohashi, M., and Tsuji, F. I. (1996) Proc. Natl. Acad. Sci. USA, 93, 13617–13622.

    PubMed  Google Scholar 

  4. Yang, F., Moss, L. G., and Phillips, G. N. (1996) Nature Biotechnol., 14, 1246–1251.

    Article  Google Scholar 

  5. Phillips, G. N., Jr. (1998) in Green Fluorescent Protein: Properties, Applications, and Protocols (Chalfie, M., and Kain, R., eds.) Wiley-Liss, New York, pp. 77–96.

    Google Scholar 

  6. Matz, M. V., Fradkov, A. F., Labas, Y. A., Savitsky, A. P., Zaraisky, A. G., Markelov, M. L., and Lukyanov, S. A. (1999) Nat. Biotechnol., 17, 969–973.

    Article  PubMed  Google Scholar 

  7. Gross, L. A., Baird, G. S., Hoffman, R. C., Baldridge, K. K., and Tsien, R. Y. (2000) Proc. Natl Acad. Sci. USA, 97, 11990–11995.

    PubMed  Google Scholar 

  8. Wall, M. A., Socolich, M., and Ranganathan, R. (2000) Nature Struct. Biol., 7, 1133–1138.

    PubMed  Google Scholar 

  9. Reid, B. G., and Flynn, G. C. (1997) Biochemistry, 36, 6789–6791.

    Google Scholar 

  10. Vrzheshch, P. V., Akovbian, N. A., Varfolomeyev, S. D., and Verkhusha, V. V. (2000) FEBS Lett., 487, 203–208.

    PubMed  Google Scholar 

  11. Baird, S. G., Zacharias, D. A., and Tsien, R. Y. (2000) Proc. Natl. Acad. Sci. USA, 97, 11984–11989.

    PubMed  Google Scholar 

  12. Bokman, S. H., and Ward, W. W. (1981) Biochem. Biophys. Res. Commun., 101, 1372–1380.

    PubMed  Google Scholar 

  13. Ward, W. W. (1981) in Bioluminescence and Chemiluminescence: Basic Chemistry and Analytical Applications (DeLuca, M., and McElroy, D. W., eds.) Academic Press, New York, pp. 235–242.

    Google Scholar 

  14. Llopis, J., McCaffery, J. M., Miyawaki, A., Farquhar, M. G., and Tsien, R. Y. (1998) Proc. Natl. Acad. Sci. USA, 95, 6803–6808.

    Article  PubMed  Google Scholar 

  15. Elsliger, M., Wachter, R. M., Hanson, G. T., Kallio, K., and Remington, S. J. (1999) Biochemistry, 38, 5296–5301.

    PubMed  Google Scholar 

  16. Ward, W. W. (1998) in Green Fluorescent Protein: Properties, Applications, and Protocols (Chalfie, M., and Kain, R., eds.) Wiley-Liss, New York, pp. 45–75.

    Google Scholar 

  17. Freifelder, D. (1976) Physical Biochemistry, W. H. Freeman and Company, San Francisco.

    Google Scholar 

  18. Wiedenmann, J., Elke, C., Spindler, K. D., and Funke, W. (2000) Proc. Natl. Acad. Sci. USA, 97, 14091–14096.

    PubMed  Google Scholar 

  19. Culter, M. W., and Ward, W. W. (1997) in Bioluminescence and Chemiluminescence: Molecular Reporting with Photons (Hastings, J. W., Kricka, L. J., and Stanley, P. E., eds.) Wiley, New York, pp. 403–406.

    Google Scholar 

  20. Yarbrough, D., Wachter, R. M., Kallio, K., Matz, M. V., and Remington, S. J. (2001) Proc. Natl. Acad. Sci. USA, 98, 462–467.

    Article  PubMed  Google Scholar 

  21. Varfolomeyev, S. D., and Gurevich, K. G. (1999) in Biokinetics: Practical Course [in Russian], FAIR-PRESS Moscow.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verkhusha, V.V., Akovbian, N.A., Efremenko, E.N. et al. Kinetic Analysis of Maturation and Denaturation of DsRed, a Coral-Derived Red Fluorescent Protein. Biochemistry (Moscow) 66, 1342–1351 (2001). https://doi.org/10.1023/A:1013325627378

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013325627378

Navigation