Skip to main content
Log in

Thermally Induced, Nonlinear Vibrations of Rotating Disks

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The natural frequency and responses for the nonlinear free vibration ofheated rotating disks are presented analytically when nonuniformtemperature distributions pertaining to the laminar and turbulentairflow induced by disk rotation are considered. The nonuniformtemperature distributions on the disk are highly dependent on itsrotation speed. The natural frequencies for symmetric and asymmetricresponses of a 3.5 inch diameter computer memory disk are calculated.When the disk is heated, its stiffness becomes larger for the two lowestnodal diameter numbers and smaller for the other nodal diameter numbers.It implies that the vibration of heated, rotating disks for the highernodal diameter numbers may be induced more easily than the cooled one.The results for the nonlinear vibration can reduce to those for thelinear vibration when the nonlinear effects vanish. To furtherinvestigate of the interaction of thermal and nonlinearity of rotatingdisks, the temperature distribution for such a rotating disk needs to bedeveloped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kirchhoff, G., ‘Ñber das Gleichgewicht und die Bewegung einer elastischen Scheibe’, Journal für reine und angewandte Mathematik 40, 1850, 51–88.

    Google Scholar 

  2. Kirchhoff, G., ‘Ñber die Schwingungen einer kreisformigen elastischen Scheibe’, Poggendorffs Annal 81, 1850, 258–264.

    Google Scholar 

  3. Lamb, H. and Southwell, R. V., ‘The vibrations of a spinning disc’, Proceedings of the Royal Society of London 99, 1921, 272–280.

    Google Scholar 

  4. Southwell, R. V., ‘On the free transverse vibrations of a uniform circular disc clamped at its centre; and on the effects of rotation’, Proceedings of the Royal Society of London 101, 1922, 133–153.

    Google Scholar 

  5. Mote, Jr., C. D., ‘Free vibration of initially stressed circular plates’, Journal of Engineering for Industry 87, 1965, 258–264.

    Google Scholar 

  6. Iwan, W. D. and Moeller, T. L., ‘The stability of a spinning elastic disk with a transverse load system’, Journal of Applied Mechanics 43, 1976, 485–490.

    Google Scholar 

  7. Tobias, S. A., ‘Free undamped nonlinear vibrations of imperfect circular disks’, Proceedings of the Institute of Mechanical Engineers 171, 1957, 691–701.

    Google Scholar 

  8. Nowinski, J. L., ‘Non-linear transverse vibrations of a spinning disk’, Journal of Applied Mechanics 31, 1964, 72–78.

    Google Scholar 

  9. Advani, S. H., ‘Stationary waves in a thin spinning disk’, International Journal of Mechanical Sciences 9, 1967, 307–313.

    Google Scholar 

  10. Advani, S. H. and Bulkeley, P. Z., ‘Nonlinear transverse vibrations and waves in spinning membrane discs’, International Journal of Non-Linear Mechanics 4, 1969, 123–127.

    Google Scholar 

  11. Maher, J. F. and Adams, G. G., ‘Effect of displacement-dependent membrane stresses on the axisymmetric configuration of a spinning flexible disk’, ATLE Tribology Transactions 34(4), 1991, 597–603.

    Google Scholar 

  12. Renshaw, A. A. and Mote, Jr., C. D., ‘A perturbation solution for the flexible rotating disk: Nonlinear equilibrium and stability under transverse loading’, Journal of Sound and Vibration 183, 1995, 309–326.

    Google Scholar 

  13. Luo, A. C. J. and Mote, Jr., C. D., ‘Nonlinear vibration of rotating, thin disks’, ASME, Journal of Vibration and Acoustics 122, 2000, 376–383.

    Google Scholar 

  14. Luo, A. C. J., ‘An approximate theory for geometrically-nonlinear thin plates’, International Journal of Solids and Structures 37(51), 2000, 7655–7670.

    Google Scholar 

  15. Mote, Jr., C. D., ‘Theory of thermal natural frequency variation in disks’, International Journal of Mechanical Science 8, 1966, 547–557.

    Google Scholar 

  16. Tulizka, E., ‘Temperature distribution and thermal stress in a rotating turbine disk for various starting conditions’, Archiwum Budowy Maszyn XXVII, 1980, 2–24.

    Google Scholar 

  17. Nowinski, J. L., ‘Stability of nonlinear thermoelastic waves in membrane-like spinning disks’, Journal of Thermal Sciences 4, 1981, 1–11.

    Google Scholar 

  18. Boulahbal, D. and Crandall, S. H., ‘Self-excited harmonic and solitary waves in a spinning disk (with video presentation)’, in Proceedings of 1997 ASME Design Engineering Technical Conference, Sacramento, CA, September 14-17, ASME, New York, 1997, Paper No. DETC97/VIB-4093.

    Google Scholar 

  19. Saniei, N. and Yan, X., ‘An experimental study of heat transfer from a disk rotating in an infinite environment including heat transfer enhancement by jet impingement cooling’, Journal of Enhanced Heat Transfer 7, 2000, 231–245.

    Google Scholar 

  20. Kirchhoff, G., Gesammelte Abhandlungen, Leipzig, 1882.

  21. Rao, J. S., Dynamics of Plates, Marcel Dekker, New York, 1999.

    Google Scholar 

  22. Prescott, J., Applied Elasticity, Dover Publication, New York, 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saniei, N., Luo, A.C.J. Thermally Induced, Nonlinear Vibrations of Rotating Disks. Nonlinear Dynamics 26, 393–409 (2001). https://doi.org/10.1023/A:1013324609079

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013324609079

Navigation