Skip to main content
Log in

Stresses and Strains in a Disk of Physically Nonlinear Material with Stress State Dependent Properties

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract—

An analysis properties of the constitutive relations of the theory of deformation for physically nonlinear materials with properties depending on the type of stress state is carried out. These relations take into account two forms of nonlinearity, one of them is associated with the nonlinearity of the deformation diagrams and another one is associated with the change in these diagrams depending on the loading conditions. The distributions of stresses and strains in a rotating disk made of a material with properties sensitive to the type of stress state are investigated and a comparison with the results of calculations for a material with properties invariant to the form of external forces is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. S. Deshpande, and Fleck N.A. “High strain rate compressive behaviour of aluminium alloy foams,” Int. J. Impact Eng. 24, 277–298 (2000).

    Article  Google Scholar 

  2. V. S. Deshpande and N. A. Fleck, “Multi-axial yield behaviour of polymer foams,” Acta Mater. 49, 1859–1866 (2001).

    Article  Google Scholar 

  3. I. Sridhar and N. A. Fleck, “The multiaxial yield behaviour of an aluminium alloy foam,” J. Mater. Sci. 40, 4005–4008 (2005).

    Article  ADS  Google Scholar 

  4. L. H. Han, J. A. Elliott, A. C. Bentham, et al., “A modified Drucker-Prager Cap model for die compaction simulation of pharmaceutical powders,” Int. J. Solid Struct. 45, 3088–3106 (2008).

    Article  Google Scholar 

  5. O. Cazacu and J. Stewart, “Analytic plastic potential for porous aggregates with matrix exhibiting tensioncompression asymmetry,” J. Mech. Phys. Solids 57, 325–341 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Pietrusczac and Z. Mroz, “Formulation of anisotropic failure criteria incorporating a microstructure tensor,” Comp. Geotech. 26, 105–112 (2000).

    Article  Google Scholar 

  7. Z. Gao, J. Zhao and Y. Yao, “A generalized anisotropic failure criterion for geomaterials,” Int. J. Solid Struct. 47, 3166–3185 (2010).

    Article  Google Scholar 

  8. F. Barlat, Y. Maeda, K. Chung, et al., “Yield function development for aluminium alloy sheets,” J. Mech. Phys. Solids 45, 1727–1763 (1997).

    Article  ADS  Google Scholar 

  9. S. Soare and F. Barlat, “Convex polynomial yield functions,” J. Mech. Phys. Solids 58, 1804–1818 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  10. D. C. C. Lam, F. Yang, A. C. M. Chong, et al., “Experiments and theory in strain gradient Elasticity,” J. Mech. Phys. Solids 51, 1477–1508 (2003).

    Article  ADS  Google Scholar 

  11. A. W. Mc Farland and J. S. Colton, “Role of material microstructure in plate stiffness with relevance to microcantilever sensors,” J. Micromech. Microeng. 15, 1060–1067 (2005).

    Article  ADS  Google Scholar 

  12. B. V. Sankar, “An elasticity solution for functionally graded beams,” Compos. Sci. Technol. 61, 689-696 (2001).

    Article  Google Scholar 

  13. A. Chakraborty, S. Gopalakrishnan, and J.N. Reddy, “A new beam finite element for the analysis of functionally graded materials,” Int. J. Mech. Sci. 45, 519–539 (2003).

    Article  Google Scholar 

  14. Y. Q. Fu, H. J. Du, and S. Zhang, “Functionally graded TiN/TiNi shape memory alloy films,” Mater. Lett. 57, 2995–2999 (2003).

    Article  Google Scholar 

  15. Z. Lee, C. Ophus, L.M. Fischer, Nelson, et al., “Metallic NEMS components fabricated from nanocomposite Al–Mo films,” Nanotechn. 17, 3063–3070 (2006).

    Article  Google Scholar 

  16. E. V. Lomakin, B. N. Fedulov, and A. M. Melnikov, “Constitutive models for anisotropic materials susceptible to loading conditions,” in Mechanics and Model-Based Control of Advanced Engineering Systems (Springer-Verlag, Wien, 2014), pp. 209–216.

    Google Scholar 

  17. E. V. Lomakin and B. N. Fedulov, “Nonlinear anisotropic elasticity for laminate composites,” Meccanica 50 (6), 1527–1535 (2015).

    Article  MathSciNet  Google Scholar 

  18. S. Liu and H. Qiao, “Topology optimization of continuum structures with different tensile and compressive properties in bridge layout design,” Struct. Multidiscip. Optim. 43, 369–380 (2011).

    Article  Google Scholar 

  19. K. Cai, Z. J. Luo, and Q. H. Qin, “Topology optimization of bi-modulus structures using the concept of bone remodeling,” Eng. Comp. 31, 1361–1378 (2014).

    Article  Google Scholar 

  20. E. V. Lomakin and M. P. Tretyakov, “Fracture properties of graphite materials and analysis of crack growth under bending conditions,” Meccanica 51 (10), 2353–2364 (2016).

    Article  MathSciNet  Google Scholar 

  21. G. Medri, “A nonlinear elastic model for isotropic materials with different behavior in tension and compression,” Trans. ASME J. Eng. Mat. Techn. 104, 26–28 (1982).

    Article  Google Scholar 

  22. S. A. Ambartsumyan, Different-Modulus Elasticity Theory (Nauka, Moscow, 1982) [in Russian].

    MATH  Google Scholar 

  23. R. M. Jones, “Buckling of circular cylindrical shells with different moduli in tension and compression,” AIAA J. 9, 53–61 (1971).

    Article  ADS  Google Scholar 

  24. R. M. Jones, “Buckling of stiffened multilayered circular cylindrical shells with different orthotropic moduli in tension and compression,” AIAA J. 9, 917–923 (1971).

    Article  ADS  Google Scholar 

  25. B. P. Patel, K. Khan, and Y. Nath, “A new constitutive model for bimodular laminated structures: Application to free vibrations of conical/cylindrical panels,” Compos. Struct. 110, 183–191 (2014).

    Article  Google Scholar 

  26. Z. M. Ye, H. R. Yu, and W. J. Yao, “A new elasticity and finite element formulation for different Young’s modulus when tension and compression loading,” J. Shanghai Univ. 5, 89–92 (2001).

    Article  MathSciNet  Google Scholar 

  27. K. Vijayakumar and K. P. Rao, “Stress–strain relation for composites with different stiffnesses in tension and compression – a new model,” Int. J. Comp. Mech. 1, 167–175 (1987).

    Article  Google Scholar 

  28. E. V. Lomakin, “Difference in the modules of composite materials,” Mech. Compos. Mater. 17 (1), 18–24 (1981).

    Article  ADS  Google Scholar 

  29. E. V. Lomakin, “Constitutive relations of deformation theory for dilatant media,” Mech. Solids 26 (6), 66–75 (1991).

    Google Scholar 

  30. T. A. Belyakova and E. V. Lomakin, “Elastoplastic deformation of a dilatant medium subjected to a plane stress state near a crack tip,” Mech. Solids 39 (1), 81–87 (2004).

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant 20-11-20230).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Lomakin or O. P. Shchendrigina.

Additional information

Translated by A. A. Borimova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomakin, E.V., Shchendrigina, O.P. Stresses and Strains in a Disk of Physically Nonlinear Material with Stress State Dependent Properties. Mech. Solids 55, 475–481 (2020). https://doi.org/10.3103/S0025654420040081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654420040081

Keywords:

Navigation