Skip to main content
Log in

Iontophoretic Delivery of Ropinirole Hydrochloride: Effect of Current Density and Vehicle Formulation

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The objectives of this work were 1) to establish the feasibility of the transdermal iontophoretic delivery of ropinirole hydrochloride; 2) to investigate the possibility of delivering therapeutic doses of this drug; and 3) to determine the key factors that control ropinirole electrotransport.

Methods. A series of in vitro transdermal iontophoretic experiments were instituted to study the effects of drug concentration, co-ion concentration, intensity of current, and application time on ropinirole flux. The convective contribution to ropinirole electrotransport was evaluated by following the transport of the electroosmotic marker mannitol.

Results. Ropinirole flux decreased dramatically in the presence of competing ions. This effect was observed even when the molar fraction of the two competing cations was kept constant. Anodal flux of mannitol decreased with drug concentration, indicating a possible alteration of the skin permselectivity. In the absence of competing co-ions, ropinirole transport number reached a maximum value (8-13%). In these conditions, the main factor controlling drug delivery was the intensity of current applied.

Conclusions. Transdermal iontophoresis allowed the delivery of therapeutic doses of ropinirole. The dose administered and the input rate were controlled by the judicious choice of the key delivery factors here described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. F. Tulloch. Pharmacologic profile of Ropinirole. Neurology 49:S58-S62 (1997).

    Google Scholar 

  2. M. J. Vidalilhet, A. M. Bonnet, S. Belal, B. Dubois, C. Marle, and Y. Agid. Ropinirole without levodopa in Parkinson's disease. Lancet 336:316-317 (1990).

    Google Scholar 

  3. A. J. Matheson and C. M. Spencer. Ropinirole. A review of its use in the management of Parkinson's disease. Drugs 60: 115-137 (2000).

    Google Scholar 

  4. C. H. Adler, K. D. Sethi, R.A. Hauser, T. L. Davis, J. P. Hammarstad, J. Bertoni, R. L. Taylor, J. Sanchez-Ramos, and C. F. O'Brien. Ropinirole for the treatment of early Parkinson's disease. Neurology 49:393-399 (1997).

    Google Scholar 

  5. A. E. Scharg, D. J. Brooks, E. Brunt, D. Fuell, A. Korczyn, W. Poewe, N. P. Quinn, O. Rascol, and F. Stocchi. The safety of Ropinirole, a selective nonergoline dopamine agonist, in patients with Parkinson's disease. Neuropharmacology 21:169-175 (1998).

    Google Scholar 

  6. B. H. Sage. Iontophoresis. In E. W. Smith, H. I. Maibach, (eds), Percutaneous Penetration Enhancers. CRC Press, Boca Raton, Florida 1995 pp 351-368.

    Google Scholar 

  7. R. R. Burnette and B. Ongipattanakul. Characterization of the permselective properties of excised human skin during iontophoresis. J. Pharm. Sci. 76:765-773 (1987).

    Google Scholar 

  8. P. G. Green, R. S. Hinz, C. Cullander, G. Yamane, and R. H. Guy. Iontophoretic delivery of aminoacids and aminoacid derivatives across the skin in vitro. Pharm. Res. 8:1113-1120 (1991).

    Google Scholar 

  9. P. W. Atkins. Physical Chemistry. Oxford University Press, 1978.

  10. W. J. Moore. Physical Chemistry. Prentice-Hall Inc, London, 1972.

    Google Scholar 

  11. D. Marro, M. B. Delgado-Charro, Y. N. Kalia, and R. H. Guy. Iontophoretic transport mechanisms: Effect of background electrolyte and competing ions. Proceed. Intl Symp. Control. Release Bioact. Mater. 26:94-95 (1999).

    Google Scholar 

  12. G. B. Kasting and J. C. Keister. Application of electrodiffusion theory for a homogeneous membrane to ion iontophoretic transport trough skin. J. Control. Release 8:195-210 (1989).

    Google Scholar 

  13. R. V. Padmanabhan, J. B. Phipps, G. A. Lattin, and R. J. Sawchuk. In vitro and in vivo evaluation of transdermal iontophoretic delivery of hydromorphone. J. Control. Release 11:123-135 (1990).

    Google Scholar 

  14. L. Wearly, J. C. Liu, and Y. W. Chien. Iontophoresis facilitated transdermal delivery of verapamil II. Factors affecting the skin permeability. J. Control. Release 9:231-242 (1989).

    Google Scholar 

  15. S. Thysman, C. Tasset, and V. Préat. Transdermal iontophoresis of fentanyl: delivery and mechanistic analysis. Int. J. Pharm. 101:105-113 (1994).

    Google Scholar 

  16. L. L. Miller and G. A. Smith. Iontophoretic transport of acetate and carboxylate ions through hairless mouse skin: cation exchange membrane model. Int. J. Pharm. 49:15-22 (1989).

    Google Scholar 

  17. M. B. Delgado-Charro and R. H. Guy. Iontophoretic delivery of nafarelin across the skin. Int. J. Pharm. 117:165-172 (1995).

    Google Scholar 

  18. A. J. Hoogstraate, V. Srinivasan, S. M. Sims, and W. I. Higuchi. Iontophoretic enhancement of peptides: Behavior of leuprolide versus model permeants. J. Control. Release 31:41-47 (1994).

    Google Scholar 

  19. J. Hirvonen and R. H. Guy. Iontophoretic delivery across the skin: electroosmosis and its modulation by drug substances. J. Control. Release 14:1258-1262 (1997).

    Google Scholar 

  20. J. Hirvonen, Y. N. Kalia, and R. H. Guy. Transdermal delivery of peptides by iontophoresis. Nat. Biotech. 14:1710-1713 (1996).

    Google Scholar 

  21. A. Kim, P. G. Green, G. Rao, and R. H. Guy. Convective solvent flow across the skin during iontophoresis. Pharm. Res. 10:1315-1320 (1993).

    Google Scholar 

  22. P. Santi and R. H. Guy. Reverse iontophoresis—Parameters determining electroosmotic flow: I. pH and ionic strength. J. Control. Release 38:159-165 (1996).

    Google Scholar 

  23. M. P. Pikal and S. Shah. Transport mechanisms in iontophoresis II. Electroosmotic flow and transference number measurements for hairless mouse skin. Pharm. Res. 7:213-223 (1990).

    Google Scholar 

  24. J. B. Phipps and J. R. Gyory. Transdermal ion migration. Adv. Drug Deliv. Rev. 9:137-176 (1992).

    Google Scholar 

  25. D. Marro, M. B. Delgado-Charro, Y. N. Kalia, and R. H. Guy. Optimizing iontophoretic drug delivery: Identification and distribution of the charge-carrying species. Proceed. Intl Symp. Control. Release Bioact. Mater. 27:938-939 (2000).

    Google Scholar 

  26. N. H. Yoshida and M. S. Roberts. Prediction of cathodal iontophoretic transport of various anions across excised skin form different vehicles using conductivity measurements. J. Pharm. Pharmacol. 47:883-890 (1995).

    Google Scholar 

  27. N. H. Yoshida and M. S. Roberts. Role of conductivity in iontophoresis. Part 2. Anodal iontophoretic transport of phenylethylamine and sodium across excised human skin. J. Pharm. Sci. 35:350-344 (1994).

    Google Scholar 

  28. R. C. Weast. Handbook of Chemistry and Physics, 55th Edition. CRC Press, Cleveland, Ohio 1974.

    Google Scholar 

  29. A. Luzardo-Alvarez, M. Rodriguez-Fernandez, J. Blanco-Mendez, R. H. Guy, and M. B. Delgado-Charro. Iontophoretic permselectivity of mammalian skin: characterization of hairless mouse and porcine membrane models. Pharm. Res. 15:984-987 (1998).

    Google Scholar 

  30. M. B. Delgado-Charro and R. H. Guy. Characterization of convective solvent flow during iontophoresis. Pharm. Res. 11:929-935 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luzardo-Alvarez, A., Delgado-Charro, M.B. & Blanco-Méndez, J. Iontophoretic Delivery of Ropinirole Hydrochloride: Effect of Current Density and Vehicle Formulation. Pharm Res 18, 1714–1720 (2001). https://doi.org/10.1023/A:1013322613436

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013322613436

Navigation