Skip to main content
Log in

Transistor Doping-Predictions for Superconductivity in the Charge Order Model

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Transistor doping of potential superconductors promises to illuminate inherent levels and limits for the materials in question. Here some of these limits are quantitatively predicted on a charge order or “radical” model for a variety of experiments. This model is based on a universal T c scaling with anionic radical concentration. It is applicable to systems with covalently bonded, high electronegativity components. For the cuprates its general features are a linear increase of T c with holes, which are normalized per total hole carrying species (e.g., O radical density). This dependence proceeds up to optima, corresponding to a uniform alternate hole charge order limit and T c decreases thereafter with various slopes. The optima are quantitatively calibrated through the deleterious influence of the Blocking layer as measured by its O content. Amongst the predictions is a general limit of T c max ∼ 167 K for oxide superconductors, obtainable in infinite layer type compounds (CaCuO2). Other predictions are optimal T c ∼ 83 K for La2CuO4 and maximum values potentially near 500 K for borides or carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. H. Schoen, C. Cloc, and B. Batlogg, Nature 408, 549 (2000).

    Google Scholar 

  2. J. H. Schoen, C. Cloc, and B. Batlogg, Nature 406, 702 (2000).

    Google Scholar 

  3. C. Park and R. L. Snyder, J. Am. Ceram. Soc. 78, 3171 (1995).

    Google Scholar 

  4. B. Raveau, Crystal Chemistry of High Tc Superconducting Oxides (Springer, Berlin, 1991).

    Google Scholar 

  5. H. Oesterreicher, J. Solid State Chem. 158, 139 (2001).

    Google Scholar 

  6. H. Oesterreicher, J. Alloys Compd. 299, 264 (2000).

    Google Scholar 

  7. H. Oesterreicher and J. O'Brien, J. Alloys Compd. 306, 96 (2000).

    Google Scholar 

  8. D. Ko and H. Oesterreicher, Physica C 277, 95 (1997).

    Google Scholar 

  9. H. Oesterreicher, J. Alloys Compd. 299, 264 (2000).

    Google Scholar 

  10. H. Oesterreicher, J. Low Temp. Phys. 177, 993 (1999).

    Google Scholar 

  11. M. R. Presland and J. L. Tallon, Physica C 176, 95 (1991).

    Google Scholar 

  12. A. Simon, Angew. Chem., Int. Ed. 36, 1788 (1997).

    Google Scholar 

  13. T. Mizokawa, A. Fujimori, and H. Namatame, Phys. Rev. 49, 7193 (1994).

    Google Scholar 

  14. H. Oesterreicher, J. Alloys Compd. 299, 264 (2000).

    Google Scholar 

  15. Y. Petrov and T. Egami, Phys. Rev. B 58, 9485 (1998).

    Google Scholar 

  16. Z. Zou and J. Ye, Phys. Rev. Lett. 80, 1074 (1998).

    Google Scholar 

  17. R. Sercice, Science 291, 1476 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oesterreicher, H. Transistor Doping-Predictions for Superconductivity in the Charge Order Model. Journal of Superconductivity 14, 705–711 (2001). https://doi.org/10.1023/A:1013299827143

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013299827143

Navigation