Skip to main content
Log in

Transport and Cu K-XANES Studies of (Hg,Cr)Sr2(Ca,Y)Cu2O6 + δ

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

The nominal (Hg0.7Cr0.3)Sr2(Ca0.7Y0.3)Cu2O6 + δ, referred to as (Hg,Cr)-1212, were successfully synthesized at high temperature in partial vacuum. The samples were subsequently annealed in Ar or O2 annealed at 300°C under ambient pressure. No T c was observed in any of these samples down to 12 K which is in contrast to high pressure synthesized Y-free (Hg,Cr)-1212 phase where the latter exhibits a superconductivity at ∼80 K. The divalent state of Cu, as shown by XANES in the as-prepared (Hg,Cr)-1212, is not affected either by Ar or O2 annealing. Depletion of holes due to trivalent Y substitution at the Ca-site, and a relatively higher 'a' lattice parameter (≥3.851 Å) are the apparent reasons for the non-superconducting nature of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. Chmaissem and Z. Z. Sheng, Physica C 242, 23 (1995).

    Google Scholar 

  2. E. Kandyel, X. J. Wu, S. Adachi, and S. Tajima, Physica C 322, 9 (1999).

    Google Scholar 

  3. S. Hahakura, J. Shimoyama, O. Shiino, and K. Kishio, Physica C 233, 1 (1994).

    Google Scholar 

  4. K. Tang, Y. Qian, Z. Chen, L. Yang, L. Wang, and Y. Zhang, Physica C 242, 216 (1995).

    Google Scholar 

  5. S. Balamurugan, S. Gupta, B. D. Padalia, O. Prakash, I. K. Gopalakrishnan, J. V. Yakhmi, and P. Selvam, J. Supercond. 14, 429 (2001).

    Google Scholar 

  6. S. Balamurugan, S. Gupta, B. D. Padalia, O. Prakash, I. K. Gopalakrishnan, J. V. Yakhmi, and P. Selvam, J. Supercond. 14, 437 (2001).

    Google Scholar 

  7. S. Balamurugan, I. K. Gopalakrishnan, O. Prakash, B. D. Padalia, J. V. Yakhmi, and P. Selvam, Mod. Phys. Lett. B 15, 261 (2001).

    Google Scholar 

  8. J. Shimoyama, S. Hahakura, K. Kitazawa, K. Yamafuji, and K. Kishio, Physica C 224, 1 (1994).

    Google Scholar 

  9. J. Shimoyama, S. Hahakura, R. Kobayasashi, K. Kitazawa, K. Yamafuji, and K. Kishio, Physica C 235–240, 2795 (1994).

    Google Scholar 

  10. K. Yamaura, J. Shimoyama, S. Hahakura, Z. Hiroi, M. Takano, and K. Kishio, Physica C 246, 351 (1995).

    Google Scholar 

  11. O. Chmaissem, D. N. Argyriou, D. G. Hinks, J. D. Jorgensen, B. G. Storey, H. Zhang, L. D. Marks, Y. Y. Wang, V. P. Dravid, and B. Dabrowski, Phys. Rev. B 52, 15636 (1995).

    Google Scholar 

  12. O. Chmaissem, T. Z. Deng, and Z. A. Sheng, Physica C 242, 17 (1995).

    Google Scholar 

  13. J. B. Mandal, B. Bandyopadhyay, B. Ghosh, H. Rajagopal, A. Sequeira, and J. V. Yakhmi, J. Supercond. 9, 261 (1996).

    Google Scholar 

  14. B. Bandyopadhyay, J. B. Mandal, B. Ghosh, A. Poddar, and P. Choudhury, Physica B 223–224, 580 (1996).

    Google Scholar 

  15. O. Chmaissem, J. D. Jorgensen, K. Yamaura, Z. Hiroi, M. Takano, J. Shimoyama, and K. Kishio, Phys. Rev.B 53, 14647 (1996).

    Google Scholar 

  16. B. Bandyopadhyay, J. B. Mandal, A. Poddar, P. Choudhury, and B. Ghosh, J. Phys.: Condens. Matter 8, 1743 (1996).

    Google Scholar 

  17. J. H. Choi, M. S. Kim, S. Lee, S. Y. Lee, J. V. Yakhmi, J. B. Mandal, B. Bandyopadhyay, and B. Ghosh, Phys. Rev. B 58, 538 (1998).

    Google Scholar 

  18. J. L. Wagner, P. G. Radaelli, D. G. Hinks, J. D. Jorgensen, J. F. Mitchell, B. Dabrowski, G. S. Knapp, and M. A. Beno, Physica C 210, 447 (1993).

    Google Scholar 

  19. L. W. Finger, R. M. Hazen, R. T. Downs, R. L. Meng, and C. W. Chu, Physica C 226, 216 (1994).

    Google Scholar 

  20. A. Asab, A. R. Armstrong, I. Gameson, and P. P. Edwards, Physica C 255, 180 (1995).

    Google Scholar 

  21. J. L. Wagner, B. A. Hunter, D. G. Hinks, and J. D. Jorgensen, Phys. Rev. B 51, 15407 (1995).

    Google Scholar 

  22. A. Bertinotti, D. Colson, J. Hammann, J. F. Marucco, D. Luzet, A. Pinatel, and V. Viallet, Physica C 250, 213 (1995).

    Google Scholar 

  23. E. T. Alexandre, S. M. Loureiro, E. V. Antipov, P. Bordet, S. D. Brion, J. J. Capponi, and M. Marezio, PhysicaC 245, 207 (1995).

    Google Scholar 

  24. D. Pelloquin, V. Hardy, A. Maignan, and B. Raveau, Physica C 273, 205 (1997).

    Google Scholar 

  25. O. Chmaissem, Q. Huang, S. N. Putilin, M. Marezio, and A. Santoro, Physica C 212, 259 (1993).

    Google Scholar 

  26. P. G. Radaelli, J. L. Wagner, B. A. Hunter, M. A. Beno, G. S. Knapp, J. D. Jorgensen, and D. G. Hinks, Physica C 216, 29 (1993).

    Google Scholar 

  27. M. Hirabayashi, K. Tokiwa, H. Ozawa, Y. Noguchi, M. Tokumoto, and H. Ihara, Physica C 219, 6 (1994).

    Google Scholar 

  28. E. V. Antipov, J. J. Capponi, C. Chaillout, O. Chmaissem, S. M. Loureiro, M. Marezio, S. N. Putilin, A. Santoro, and J. L. Tholence, Physica C 218, 348 (1993).

    Google Scholar 

  29. S. Reich and D. Veretnik, Physica C 231, 1 (1994).

    Google Scholar 

  30. L. J. Winch and M. S. Islam, J. Chem. Soc., Chem. Commun. 1595 (1995).

  31. M. S. Islam and L. J. Winch, Phys. Rev. B 52, 10510 (1995).

    Google Scholar 

  32. X. Zhang, S. Y. Xu, and C. K. Ong, Physica C 262, 13 (1996).

    Google Scholar 

  33. Q. Huang, J. W. Lynn, Q. Xiong, and C. W. Chu, Phys. Rev. B 52, 462 (1995).

    Google Scholar 

  34. P. Bordet, F. Duc, S. Lefloch, J. J. Capponi, E. Alexandre, M. Rosa–Nunes, S. Putilin, and E. V. Antipov, Physica C 271, 189 (1996).

    Google Scholar 

  35. V. L. Aksenov, A. M. Balagurov, V. V. Sikolenko, V. G. Simkin, V. A. Alyoshin, E. V. Antipov, A. A. Gippius, D. A. Mikhailova, S. N. Putilin, and F. Bouree, Phys. Rev. B 55, 3966 (1997).

    Google Scholar 

  36. A. M. Balagurov, D. V. Sheptyakov, V. L. Aksenov, E. V. Antipov, S. N. Putilin, P. G. Radelli, and M. Marezio, Phys. Rev. B 59, 7209 (1999).

    Google Scholar 

  37. B. D. Padalia, S. J. Gurman, P. K. Mehta, and O. Prakash, Indian J. Pure Appl. Phys. 30, 640 (1992).

    Google Scholar 

  38. S. Gupta, Ph.D. Thesis, I I T—Bombay, Mumbai, 1999.

  39. S. Gupta, R. Suba, B. D. Padalia, O. Prakash, I. K. Gopalakrishnan, and J. V. Yakhmi, Physica C 314, 98 (1999).

    Google Scholar 

  40. J. Rohler, A. Larisch, and R. Schafer, Physica C 191, 57 (1992).

    Google Scholar 

  41. J. M. Tranquada, S. M. Heald, A. R. Moodenbaugh, G. Liang, and M. Croft, Nature 337, 720 (1989).

    Google Scholar 

  42. E. E. Alp, S. M. Mini, M. Ramanathan, B. Dabrowski, D. R. Richards, and D. G. Hinks, Phys. Rev. B 40, 2617 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balamurugan, S., Prakash, O., Padalia, B.D. et al. Transport and Cu K-XANES Studies of (Hg,Cr)Sr2(Ca,Y)Cu2O6 + δ. Journal of Superconductivity 14, 687–691 (2001). https://doi.org/10.1023/A:1013243709396

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013243709396

Navigation