Skip to main content
Log in

Distribution of tritium between water and exchangeable hydrogen bridges of biomolecules

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The fractionation factor of tritium between water and biomoleculeswhich are structured by hydrogen bridges, is found to be around 2. In additionto an intramolecular accumulation, an extra-molecular one is found to be about1.4 in the hydration sheets. During growth of plants (maize), the growth incrementof tritium in non-exchangeable organically bound tritium (OBT) is about 2.4times (140% larger than) the growth increment of hydrogen. The intrinsic growthrate of tritium is about 20 percent larger than that of hydrogen. Tritiumbound in water overtakes its kinetic delay in photosynthetic or metabolicreactions according to the larger mass by the fast established thermodynamicisotope effect of proton-triton exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Buddenbaum,V. J. Shiner Jr., Isotope Effects on Enzyme-Catalyzed Reactions, W. W. Cleland,M. H. O'leary,D. B. Northrop (Eds), University Park Press, 1977.

  2. M. M. Kreevoy, J. Chem. Educ., 41 (1964) 636 and Isotopes Org. Chem., 2 (1976) 1.

    Article  CAS  Google Scholar 

  3. G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, 1997.

  4. G. A. Jeffrey,W. Saenger, Hydrogen Bonding in Biological Structures, Springer, Heidelberg, 1994.

    Google Scholar 

  5. F. BaumgÄrtner,M.-A. Kim, J. Radioanal. Nucl. Chem., 243 (2000) 295.

    Article  Google Scholar 

  6. F. BaumgÄrtner,M.-A. Kim, Appl. Radiation Isotopes, 41 (1990) 395.

    Article  Google Scholar 

  7. F. BaumgÄrtner,M.-A. Kim, Appl. Radiation Isotopes, 48 (1997) 721.

    Article  Google Scholar 

  8. M.-A. Kim,F. BaumgÄrtner, Appl. Radiation Isotopes, 45 (1994) 353.

    Article  CAS  Google Scholar 

  9. L. v. Bertalanff,W. Beier,R. Laue, Biophysik des Fließ gleichgewichts, Akademie Verlag, Berlin, 1977.

    Book  Google Scholar 

  10. R. O. Erickson, Ann. Rev. Plant Physiol., 27 (1976) 407.

    Article  Google Scholar 

  11. National Council on Radiation Protection and Measurements, Tritium and Other Radionuclide Labeled Organic Compounds Incorporated in Genetic Material, NCRP Report No. 63, 1979, p. 51.

  12. F. Hibbert,J. Emsley, Adv. Phys. Org. Chem., 26 (1990) 255.

    CAS  Google Scholar 

  13. P. Schuster,G. Zundel,C. Sandorfy, The Hydrogen Bond, North-Holland Publ. Comp. Amsterdam, New York, Oxford, 1976.

    Google Scholar 

  14. Ch. M. Dobson,P. A. Evans,S. E. Radford, TIBS, 19 (1994) 31.

    CAS  PubMed  Google Scholar 

  15. T. E. Creighton, Proteins, Structures and Molecular Properties, W. H. Freeman, New York, 1993.

    Google Scholar 

  16. T. Straume,A. L. Carsten, Health Phys., 65 (1993) 657.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumgärtner, F., Kardinal, C. & Müllen, G. Distribution of tritium between water and exchangeable hydrogen bridges of biomolecules. Journal of Radioanalytical and Nuclear Chemistry 249, 513–517 (2001). https://doi.org/10.1023/A:1013221526118

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013221526118

Keywords

Navigation