Skip to main content
Log in

Exploring the hydrogen-bonded interactions of vanillic acid with atmospheric bases: a DFT study

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Hydrogen-bonded interactions of organic acids play crucial role in many chemical and biochemical processes vital for life’s maintenance. They are important as well in the context of secondary aerosol formation in the atmosphere. In the present work, we study the nature of hydrogen-bonded acid–base interactions present in the binary clusters of vanillic acid, a natural phenolic compound found in various plants and also observed in Amazonian aerosol, with common atmospheric bases such as ammonia and methylamines (mono-, di-, and tri-methylamine). Detailed and systematic quantum-chemical DFT calculations have been performed to analyze the structural, energetic, electrical, and spectroscopic properties of the clusters. The presence of strong intermolecular hydrogen-bonds and large binding electronic energies indicates that vanillic acid interacts strongly with atmospheric molecules. Scattering intensities of radiation (Rayleigh activities) are found to increase with cluster formation. The changes in binding free energy and enthalpy of formation of the vanillic acid-ammonia/amine binary clusters at lower temperatures demonstrate increased thermodynamical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information. Any further information and/or data are available from the corresponding author on reasonable request.

References

  1. Ranadive AS (1992) J Agric Food Chem 40:1922–1924

    Article  CAS  Google Scholar 

  2. Gassenmeier K, Riesen B, Magyar B (2008) Flavour Fragr J 23:194–201

    Article  CAS  Google Scholar 

  3. Somporn C, Kamtuo A, Theerakulpisut P, Siriamornpun S (2012) J Sci Food Agric 92:1956–1963

    Article  CAS  PubMed  Google Scholar 

  4. Mattila P, Hellström J, Törrönen R (2006) J Agric Food Chem 54:7193–7199

    Article  CAS  PubMed  Google Scholar 

  5. Ayaz FA, Kadioğlu A, Reunanen M, Var M (1997) J Food Compos Anal 10:350–357

    Article  CAS  Google Scholar 

  6. Yamaguchi KKL, Pereira LFR, Lamarão CV, Lima ES, da Veiga-Junior VF (2015) Food Chem 179:137–151

    Article  CAS  PubMed  Google Scholar 

  7. Gordon A, Cruz APG, Cabral LMC, de Freitas SC, Taxi CMAD, Donangelo CM, Mattietto RA, Friedrich M, da Matta VM, Marx F (2012) Food Chem 133:256–263

    Article  CAS  PubMed  Google Scholar 

  8. Cotoras M, Vivanco H, Melo R, Aguirre M, Silva E, Mendoza L (2014) Molecules 19:21154–21167

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sharma N, Tiwari N, Vyas M, Khurana N, Muthuraman A, Utreja P (2020) Plant Arch 20:3053–3059

    Google Scholar 

  10. Pisoschi AM, Pop A, Cimpeanu C, Predoi G (2016) Oxidative Medicine and Cellular Longevity, 2016: 9130976 (1–13).

  11. Amini MH, Kalsi V, Kaur B, Khatik GL, Lobo R, Singh G, Agarhari UC, Yele S, Suttee A (2017) Res J Pharm Technol 10:3498–3502

    Article  Google Scholar 

  12. Azmi NH, Ismail IS, Imam MU (2017) Iran J Basic Med Sci 20:423–431

    Google Scholar 

  13. Saleem H, Houshmandfar A, Nallamilli BRR (2010) J Agric Food Chem 58:2909–2912

    Google Scholar 

  14. Vardharajula S, Ali SZ, Grover M, Reddy G, Bandi V, Sravankumar D (2011) Microb Cell Fact 10:1–18

    Article  Google Scholar 

  15. Mircea M, Facchini MC, Decesari S, Cavalli F, Emblico L, Fuzzi S, Vestin A, Rissler J, Swietlicki E, Frank G, Andreae MO, Maenhaut W, Rudich Y, Artaxo P (2005) Atmos Chem Phys 5:3111–3126

    Article  CAS  ADS  Google Scholar 

  16. Mayol-Bracero OL, Guyon P, Graham B, Roberts G, Andreae MO, Decesari S, Facchini MC, Fuzzi S, Artaxo P, (2002) J Geophys Res 107: LBA 59 (1–15).

  17. Fuzzi S, Decesari S, Facchini MC, Cavalli F, Emblico L, Mircea M, Andreae MO, Trebs I, Hoffer A, Guyon P, Artaxo P, Rizzo LV, Lara LL, Pauliquevis T, Maenhaut W, Raes N, Chi X, Mayol-Bracero OL, Soto-García LL, Claeys M, Kourtchev I, Rissler J, Swietlicki E, Tagliavini E, Schkolnik G, Falkovich AH, Rudich Y, Fisch G, Gatti LV (2007) J Geophys Res 112:D01201

    Article  ADS  Google Scholar 

  18. Artaxo P, Rizzo LV, Brito JF, Barbosa HMJ, Arana A, Sena ET, Cirino GG, Bastos W, Martin ST, Andreae MO (2013) Faraday Discuss 165:203–235

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Schnitzlera EG, Jäger W (2014) Phys Chem Chem Phys 16:2305–2314

    Article  Google Scholar 

  20. Wang H, Zhao X, Zuo C, Ma X, Xu F, Sun Y, Zhang Q (2019) RSC Adv 9:36171–36181

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  21. Li Y, Zhang H, Zhang Q, Xu Y, Nadykto AB (2020) J Environ Sci 95:130–140

    Article  CAS  Google Scholar 

  22. Lee X, Huang D, Liu Q, Liu X, Zhou H, Wang Q, Ma Y (2021) Sci Rep 11:7176

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  23. Liu JY, Long ZW, Mitchell E, Long B (2021) ACS Earth Space Chem 5:1363–1372

    Article  CAS  ADS  Google Scholar 

  24. Li H, Kupiainen-Määttä O, Zhang H, Zhang X, Ge M (2017) Atmos Environ 166:479–487

    Article  CAS  ADS  Google Scholar 

  25. Medeiros FS Jr, Mota C, Chaudhuri P (2022) J Phys Chem A 126:8449–8458

    Article  PubMed  Google Scholar 

  26. Yang Y, Liu L, Wang H, Zhang X (2021) J Phys Chem A 125:4200–4208

    Article  CAS  PubMed  Google Scholar 

  27. Weber KH, Morales FJ, Tao FM (2012) J Phys Chem A 116:11601–11617

    Article  CAS  PubMed  Google Scholar 

  28. Peng XQ, Liu YR, Huang T, Jiang S, Huang W (2015) Phys Chem Chem Phys 17:9552–9563

    Article  CAS  PubMed  Google Scholar 

  29. Xu W, Zhang R (2012) J Phys Chem A 116:4539–4550

    Article  CAS  PubMed  Google Scholar 

  30. Radola B, Picaud S, Ortega IK (2022) J Phys Chem A 126:1211–1220

    Article  CAS  PubMed  Google Scholar 

  31. Hodshire AL, Campuzano-Jost P, Kodros JK, Croft B, Nault BA, Schroder JC, Jimenez JL, Pierce JR (2019) Atmos Chem Phys 19:3137–3160

    Article  CAS  ADS  Google Scholar 

  32. Zhao H, Jiang X, Du L (2017) Chemosphere 174:689–699

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Gonçalves DS, Chaudhuri P (2020) J Phys Chem A 124:11072–11085

    Article  Google Scholar 

  34. Xu J, Finlayson-Pitts BJ, Gerber RB (2017) J Phys Chem A 121:2377–2385

    Article  CAS  PubMed  Google Scholar 

  35. Chen D, Wang W, Li D, Wang W (2020) RSC Adv 10:5173–5182

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  36. Bork N, Elm J, Olenius T, Vehkamäki H (2014) Atmos Chem Phys 14:12023–12030

    Article  ADS  Google Scholar 

  37. Ge P, Luo G, Luo Y, Huang W, Xie H, Chen J, Qu J (2018) Chemosphere 210:215–223

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Kürten A (2019) Atmos Chem Phys 19:5033–5050

    Article  ADS  Google Scholar 

  39. Wang CY, Jiang S, Liu YR, Wen H, Wang ZQ, Han YJ, Huang T, Huang W (2018) J Phys Chem A 122:3470–3479

    Article  CAS  PubMed  Google Scholar 

  40. Kurtén T, Loukonen V, Vehkamäki H, Kulmala M (2008) Atmos Chem Phys 8:4095–4103

    Article  ADS  Google Scholar 

  41. Olenius T et al (2017) J Geophys Res: Atmospheres 122:7103–7118

    Article  CAS  ADS  Google Scholar 

  42. Nadykto AB, Herb J, Yu FQ, Xu YS (2014) Chem Phys Lett 609:42–49

    Article  CAS  ADS  Google Scholar 

  43. Olenius T, Kupiainen-Määttä O, Ortega IK, Kurtén T, Vehkamäki H (2013) J Phys Chem 139:084312

    Article  CAS  Google Scholar 

  44. Paasonen P et al (2012) Atmos Chem Phys 12:9113–9133

    Article  CAS  ADS  Google Scholar 

  45. Erupe ME, Viggiano AA, Lee SH (2011) Atmos Chem Phys 11:4767–4775

    Article  CAS  ADS  Google Scholar 

  46. Almeida J, Schobesberger S, Kürten A, Ortega IK, Kupiainen-Määttä O, Praplan AP, Adamov A, Amorim A, Bianchi F, Breitenlechner M (2013) Nature 502:359–363

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  47. Nadykto AB, Yu FQ, Jakovleva MV, Herb J, Xu YS (2011) Entropy 13:554–569

    Article  CAS  ADS  Google Scholar 

  48. Loukonen V, Kurtén T, Ortega IK, Vehkamáki H, Pádua AAH, Sellegri K, Kulmala M (2010) Atmos Chem Phys 10:4961–4974

    Article  CAS  ADS  Google Scholar 

  49. Murphy SM, Sorooshian A, Kroll JH, Ng NL, Chhabra P, Tong C, Surratt JD, Knipping E, Flagan RC, Seinfeld JH (2007) Chem Phys 7:2313–2337

    CAS  ADS  Google Scholar 

  50. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press

    Google Scholar 

  51. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New York

    Book  Google Scholar 

  52. Elm J, Ayoubi D, Engsvang M, Jensen AB, Knattrup Y, Kubečka J, Bready CJ, Fowler VR, Harold SE, Longsworth OM, Shields GC (2023) WIREs Comput Mol Sci 13:e1662

    Article  CAS  Google Scholar 

  53. Gonçalves DS, Chaudhuri P (2020) J Phys Chem A 52:11072–11085

    Article  Google Scholar 

  54. Jeffrey JL, Terrett JA, MacMillan DW (2015) Science 349:1532–1536

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  55. Singh S, Srivastava SK, Singh DK (2014) RSC Adv 4:1761–1774

    Article  CAS  ADS  Google Scholar 

  56. Singh DK, Asthana BP, Srivastava SK (2012) J Mol Model 18:3541–3552

    Article  CAS  PubMed  Google Scholar 

  57. Singh S, Singh DK, Srivastava SK, Asthana BP (2011) Vib Spectrosc 56:26–33

    Article  CAS  Google Scholar 

  58. Maréchal Y (2008) J Mol Struct 880:38–43

    Article  ADS  Google Scholar 

  59. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  60. Chai JD, Head-Gordon M (2008) Chem Phys 128:084106

    ADS  Google Scholar 

  61. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  62. Jensen AB, Kubečka J, Schmitz G, Christiansen O, Elm J (2022) J Chem Theory Comput 18:7373–7383

    Article  CAS  PubMed  Google Scholar 

  63. Elm J, Kubečka J, Besel V, Jääskeläinen MJ, Halonen R, Kurtén T, Vehkamäki H (2020) J Aerosol Sci 149:105621

    Article  CAS  Google Scholar 

  64. Schmitz G, Elm J (2020) ACS Omega 5:7601–7612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Elm J, Kristensen K (2017) Phys Chem Chem Phys 15:1122–1133

    Article  Google Scholar 

  66. Myllys N, Elm J, Kurtén T (2016) Comput Theor Chem 1098:1–12

    Article  CAS  Google Scholar 

  67. Elm J, Mikkelsen KV (2014) Chem Phys Lett 615:26–29

    Article  CAS  ADS  Google Scholar 

  68. Elm J, Bilde M, Mikkelsen KV (2013) Phys Chem Chem Phys 15:16442–16445

    Article  CAS  PubMed  Google Scholar 

  69. Elm J, Bilde M, Mikkelsen KV (2012) Phys Chem Chem Phys 8:2071–2077

    CAS  Google Scholar 

  70. Boys SF (1970) Bernardi F. Mol Phys 19:553–566

    Article  CAS  ADS  Google Scholar 

  71. Simon S, Duran M (1996) Dannenberg JJ. J Chem Phys 105:11024–11031

    Article  CAS  ADS  Google Scholar 

  72. Fileti EE, Rivelino R, Canuto S (2003) J Phys B: At Mol Opt Phys 36:399–408

    Article  CAS  ADS  Google Scholar 

  73. Chaudhuri P, Canuto S (2006) J Mol Struct 760:15–20

    Article  CAS  Google Scholar 

  74. da Silva AM, Chakraborty S, Chaudhuri P (2012) Int J Quantum Chem 112:2822–2827

    Article  Google Scholar 

  75. Elm J, Norman P, Bilde M, Mikkelsen KV (2014) Phys Chem Chem Phys 16:10883–10890

    Article  CAS  PubMed  Google Scholar 

  76. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Had M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT

  77. Dennington RD, Keith TA, Millam JM (2008) GaussView 5.0. 9; Gaussian Inc.: Wallingford, CT, USA 

  78. Gilbert A – Iqmol 3.0, http://iqmol.org.

  79. González-Baró AC, Parajón-Costa BS, Franca AA, Pis-Diez R (2008) J Mol Struct 889:204–210

    Article  ADS  Google Scholar 

  80. Al-Jabiri MH, Hazrah AS, Jäger W (2022) J Phys Chem A 126:6686–6694

    Article  CAS  PubMed  Google Scholar 

  81. Kozlevcar B, Odlazek D, Golobic A, Pevec A, Strauch P, Segedin P (2006) Polyhedron 25:1161–1166

    Article  CAS  Google Scholar 

  82. Clavijo E, Menendez JR, Aroca A (2008) J Raman Spectrosc 39:1178–1182

    Article  CAS  ADS  Google Scholar 

  83. Swislocka R, Piekut J, Lewandorski E (2013) Spectrochim Acta A 100:31–40

    Article  CAS  ADS  Google Scholar 

Download references

Funding

The authors acknowledge financial support from the Brazilian funding agencies CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) – finance code 001, CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), and FAPEAM (Fundação de Amparo a Pesquisa do Estado do Amazonas).

Author information

Authors and Affiliations

Authors

Contributions

T.S.O. and P.C did the calculations, A.G. and P.C did the formal analyses and wrote the main manuscript, and T.S.O and P.C. prepared the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Puspitapallab Chaudhuri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1855 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, T.S., Ghosh, A. & Chaudhuri, P. Exploring the hydrogen-bonded interactions of vanillic acid with atmospheric bases: a DFT study. Struct Chem (2024). https://doi.org/10.1007/s11224-024-02307-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-024-02307-3

Keywords

Navigation