Skip to main content
Log in

Toughness of glass fibres reinforced glass-ionomer cements

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two fracture toughness parameters, the critical stress intensity factor, K c and the work of fracture, W f have been used to characterise the toughness of conventional and resin-modified glass-ionomer cements reinforced with glass fibres. The critical stress intensity factor was determined from the peak load, and the work of fracture was determined as the energy required to extend an introduced crack through the respective glass ionomers. For both materials, crack propagation became more stable as the weight fraction of glass fibres was increased. Additionally, when the weight percent of glass fibres was increased the work of fracture increased. Fibre bridging at the crack tip resulted in the increase in the work of fracture. As the percentage weight of fibres was increased, the critical stress intensity factor decreased proportionally to the increase in porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. SMITH, Biomaterials 19 (1998) 467.

    Google Scholar 

  2. A. D. WILSON and B. E. KENT, Journal of Applied Chemistry and Biotechnology 21 (1971) 313.

    Google Scholar 

  3. M. ROTHWELL, H. M. ANSTICE and G. J. PEARSON, Journal of Dentistry 26 (1998) 591.

    PubMed  Google Scholar 

  4. P. J. DOHERTY, Clinical Materials 7 (1991) 335.

    PubMed  Google Scholar 

  5. A. OLIVA, R. F. DELLA, A. SALERNO, V. RICCIO, G. TARTARO, A. COZZOLINO, S. D'AMATO, G. PONTONI and V. ZAPPIA, Biomaterials 17 (1996) 1351.

    PubMed  Google Scholar 

  6. J. W. MCLEAN and A. D. WILSON, British Dental Journal 136 (1974) 269.

    PubMed  Google Scholar 

  7. L. M. JONCK, C. J. GROBBELAAR and H. STRATING, Clinical Materials 4 (1989) 201.

    Google Scholar 

  8. L. M. JONCK and C. J. GROBBELAAR, ibid. 6 (1990) 323.

    PubMed  Google Scholar 

  9. S. CRISP, B. G. LEWIS and A. D. WILSON, Journal of Dentistry 4 (1976) 287.

    PubMed  Google Scholar 

  10. Idem., ibid. 5 (1977) 51.

  11. E. DE BARRA and R. G. HILL, Biomaterials 19 (1998) 495.

    PubMed  Google Scholar 

  12. S. GRIFFIN and R. G. HILL, J. Mater. Sci. 33 (1998) 5383.

    Google Scholar 

  13. S. G. GRIFFIN and R. G. HILL, Biomaterials 20 (1999) 1579.

    PubMed  Google Scholar 

  14. Idem., ibid. 21 (2000) 399.

  15. E. DE BARRA and R. G. HILL, ibid. 21 (2000) 563.

    PubMed  Google Scholar 

  16. S. G. GRIFFIN and R. G. HILL, ibid. 21 (2000) 693.

    PubMed  Google Scholar 

  17. A. D. WILSON, International Journal of Prosthodontics 3 (1990) 425.

    PubMed  Google Scholar 

  18. Y. MOMOI, K. HIROSAKI, A. KOHNO and J. F. MCCABE, Dental Materials Journal 14 (1995) 109.

    PubMed  Google Scholar 

  19. S. GLADYS, M. B. VAN, M. BRAEM, P. LAMBRECHTS and G. VANHERLE, Journal of Dental Research 76 (1997) 883.

    PubMed  Google Scholar 

  20. A. W. WALLS, J. ADAMSON, J. F. MCCABE and J. J. MURRAY, Dental Materials 3 (1987) 113.

    PubMed  Google Scholar 

  21. J. J. SIMMONS, Journal of the American Dental Association 120 (1990) 49.

    Google Scholar 

  22. R. E. KERBY and R. F. BLEIHOLDER, Journal of Dental Research 70 (1991) 1358.

    PubMed  Google Scholar 

  23. C. W. B. OLDFIELD and B. ELLIS, Clinical Materials 7 (1991) 313.

    Google Scholar 

  24. K. H. CHUNG, Journal of Oral Rehabilitation 20 (1993) 79.

    PubMed  Google Scholar 

  25. N. K. SARKAR, Dental Materials 15 (1999) 421.

    PubMed  Google Scholar 

  26. M. KOBAYASHI, M. KON, K. MIYAI and K. ASAOKA, Biomaterials 21 (2000) 2051.

    PubMed  Google Scholar 

  27. R. E. KOVARIK and M. V. MUNCY, American Journal of Dentistry 8 (1995) 145.

    PubMed  Google Scholar 

  28. C. A. MITCHELL, W. H. DOUGLAS and Y.-S. CHENG, Dental Materials 15 (1999) 7.

    PubMed  Google Scholar 

  29. J. F. MCCABE, Biomaterials 19 (1998) 521.

    PubMed  Google Scholar 

  30. G. LEWIS, J. NYMAN and H. H. TRIEU, ibid. 19 (1998) 961.

    PubMed  Google Scholar 

  31. J. L. GILBERT, D. S. NEY and E. P. LAUTENSCHLAGER, ibid. 16 (1995) 1043.

    PubMed  Google Scholar 

  32. L. D. T. TOPOLESKI, P. DUCHEYNE and J. M. CUCKLER, ibid. 19 (1998) 1569.

    PubMed  Google Scholar 

  33. ASTM Standards E399-83, in “American Society for Testing and Materials” (Philadelphia, PA, 1983).

  34. M. GOLDMAN, Journal of Biomedical Materials Research 19 (1985) 771.

    PubMed  Google Scholar 

  35. D. W. JACOBS, W. H. DOUGLAS, C. P. LIN and Y. S. L. CHENG, Journal of Dental Research AADR 74 (1995) 243.

    Google Scholar 

  36. M. W. BEATTY and R. M. PIDAPARTI, Biomaterials 14 (1993) 999. 107

    PubMed  Google Scholar 

  37. R. M. PIDAPARTI and M. W. BEATTY, Journal of Biomedical Materials Research 29 (1995) 309.

    PubMed  Google Scholar 

  38. C. A. MITCHELL, J. F. ORR and J. G. KENNEDY, Biomaterials 16 (1995) 11.

    PubMed  Google Scholar 

  39. A. FUJISHIMA and J. L. FERRACANE, Dental Materials 12 (1996) 38.

    PubMed  Google Scholar 

  40. S. POOLTHONG, T. MORI and M. V. SWAIN, Dental Materials Journal 13 (1994) 220.

    PubMed  Google Scholar 

  41. A. M. BRANDT, “Cement-Based Composites: Materials, Mechanical Properties, and Performance” (E & FN Spon, London SE1 8HN, UK, 1995).

    Google Scholar 

  42. B. COTTERELL and Y. W. MAI, “Fracture Mechanics of Cementitious Materials” (Blackie Academic & Professional, Glasgow G64 2NZ, 1996).

    Google Scholar 

  43. R. F. GIBSON, “Principles of Composite Material Mechanics” (McGRAW-Hill, Singapore, 1994).

    Google Scholar 

  44. J. P. SCHAFFER, A. SAXENA, T. H. SANDERS JR. and S. B. WARNER, “The Science and Design of Engineering Materials” (Richard D. Irwin, INC., Chicago, 1995) p. 594.

    Google Scholar 

  45. B. LAWN, “Fracture of Brittle Solid” (Cambridge University Press, Melbourne 3166, Australia, 1993). Received 19 December 2000 and accepted 3 August 2001 108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucksanasombool, P., Higgs, W.A.J., Higgs, R.J.E.D. et al. Toughness of glass fibres reinforced glass-ionomer cements. Journal of Materials Science 37, 101–108 (2002). https://doi.org/10.1023/A:1013149926490

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013149926490

Keywords

Navigation