Skip to main content
Log in

Gradient Maximum Principle for Minima

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We state a maximum principle for the gradient of the minima of integral functionals

$$I(u) = \int_\Omega{f(\nabla u)}+ g(u)]dx,{\text{on }}\bar u + W_0^{1,1} (\Omega ),$$

just assuming that I is strictly convex. We do not require that f, g be smooth, nor that they satisfy growth conditions. As an application, we prove a Lipschitz regularity result for constrained minima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GIAQUINTA, M., and GIUSTI, E., On the Regularity of the Minima of Variational Integrals, Acta Mathematica, Vol. 148, pp. 31-46, 1982.

    Google Scholar 

  2. CELLINA, A., On the Bounded Slope Condition and the Validity of the Euler Lagrange Equation, SIAM Journal on Control and Optimization (to appear).

  3. CELLINA, A., On the Strong Maximum Principle, Proceedings of the American Mathematical Society (to appear).

  4. GILBARG, D., and TRUDINGER, N. S., Elliptic Partial Differential Equations of Second Order, 3rd Edition, Grundenlehren der Matematischen Wissenschaften, Springer Verlag, Berlin, Germany, Vol. 224, 1998.

    Google Scholar 

  5. GIUSTI, E., Metodi Diretti nel Calcolo delle Variazioni, Unione Matematica Italiana, Bologna, Italy, 1994.

    Google Scholar 

  6. TREU, G., and VORNICESCU, M., On the Equivalence of Two Variational Problems, Calculus of Variations and Partial Differential Equations, Vol. 11, pp. 307-319, 2000.

    Google Scholar 

  7. MARICONDA, C., and TREU, G., Existence and Lipschitz Regularity for Minima, Proceedings of the American Mathematical Society (to appear).

  8. EKELAND, I., and TEMAM, R., Convex Analysis and Variational Problems, North-Holland Publishing Company, Amsterdam, Holland, 1976.

    Google Scholar 

  9. BREZIS, H., Analyse Fonctionelle: Théorie et Applications, Masson, Paris, France, 1983.

    Google Scholar 

  10. EVANS, L. C., Partial Differential Equations, Graduate Studies in Mathematics, American Mathematical Society, Providence, Rhode Island, Vol. 19, 1998.

    Google Scholar 

  11. HARTMAN, P., and STAMPACCHIA, G., On Some Nonlinear Elliptic Differential-Functional Equations, Acta Mathematica, Vol. 115, pp. 271-310, 1966.

    Google Scholar 

  12. MARICONDA, C., and TREU, G., A Comparison Principle for Minimizers, Comptes Rendus de l'Académie des Sciences de Paris, Série I, Mathématiques, Vol. 330, pp. 681-686, 2000.

    Google Scholar 

  13. ZIEMER, W. P., Weakly Differentiable Functions, Graduate Texts in Mathematics, Springer Verlag, New York, NY, Vol. 120, 1989.

    Google Scholar 

  14. BREZIS, H., and SIBONY, M., Equivalence de Deux Inéquations Variationelles et Applications, Archive of Rational Mechanics and Analysis, Vol. 41, pp. 254-265, 1971.

    Google Scholar 

  15. ROCKAFELLER, R. T., Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariconda, C., Treu, G. Gradient Maximum Principle for Minima. Journal of Optimization Theory and Applications 112, 167–186 (2002). https://doi.org/10.1023/A:1013052830852

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013052830852

Navigation