Skip to main content
Log in

Borderline gradient continuity of minima

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

The gradient of any local minimiser of functionals of the type \({w \mapsto \int_{\Omega}{f(x, w, Dw)}dx + \int_{\Omega}{w\mu}dx}\), where f has p-growth, p >  1, and \({\Omega \subset \mathbb{R}^{n}}\), is continuous provided that the optimal Lorentz space condition \({\mu \in L(n, 1)}\) is satisfied and \({x \rightarrow f(x, \cdot)}\) is suitably Dini continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Brezis, N. Fusco and C. Sbordone, Integrability for the Jacobian of orientation preserving mappings. J. Funct. Anal. 115 (1993), 425–431.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Differential Equations 5 (1980), 773–789.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Cianchi and V. Maz’ya, Global Lipschitz regularity for a class of quasilinear elliptic equations. Comm. Partial Differential Equations 36 (2011), 100–133.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Cianchi and V. Maz’ya, Global boundedness of the gradient for a class of nonlinear elliptic systems. Arch. Ration. Mech. Anal. 212 (2014), 129–177.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Cianchi and V. Maz’ya, Global gradient estimates in elliptic problems under minimal data and domain regularity. Comm. Pure Appl. Anal. 14 (2015), 285–311.

    Google Scholar 

  6. B. Dacorogna, Direct Methods in the Calculus of Variations. 2nd ed. Appl. Math. Sci. 78, Springer, New York, 2008.

  7. E. DiBenedetto, \({C^{1+\alpha}}\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7 (1983), 827–850.

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Duzaar and G. Mingione, Local Lipschitz regularity for degenerate elliptic systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 1361–1396.

    Article  MATH  MathSciNet  Google Scholar 

  9. F. Duzaar and G. Mingione, Gradient estimates via non-linear potentials. Amer. J. Math. 133 (2011), 1093–1149.

    Article  MATH  MathSciNet  Google Scholar 

  10. N. Fusco and J. Hutchinson, Partial regularity for minimisers of certain functionals having nonquadratic growth. Ann. Mat. Pura Appl. (4) 155 (1989), 1–24.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals. Acta Math. 148 (1982), 31–46.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Giaquinta and E. Giusti, Differentiability of minima of nondifferentiable functionals. Invent. Math. 72 (1983), 285–298.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Giaquinta and E. Giusti, Sharp estimates for the derivatives of local minima of variational integrals. Boll. Unione Mat. Ital. A (6) 3 (1984), 239–248.

    MATH  MathSciNet  Google Scholar 

  14. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Grundlehren Math. Wiss. 224, Springer-Verlag, Berlin, 1977.

  15. E. Giusti, Direct Methods in the Calculus of Variations. World Scientific, River Edge, NJ, 2003.

    Book  MATH  Google Scholar 

  16. C. Hamburger, Regularity of differential forms minimizing degenerate elliptic functionals. J. Reine Angew. Math. 431 (1992), 7–64.

    MATH  MathSciNet  Google Scholar 

  17. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities. Reprint of the 1952 edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988.

  18. T. Jin, V. Maz’ya and J. Van Schaftingen, Pathological solutions to elliptic problems in divergence form with continuous coefficients. C. R. Math. Acad. Sci. Paris 347 (2009), 773–778.

    Article  MATH  MathSciNet  Google Scholar 

  19. T. Kilpeläinen and J. Malý, Degenerate elliptic equations with measure data and nonlinear potentials. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 19 (1992), 591–613.

    MATH  Google Scholar 

  20. T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172 (1994), 137–161.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Kristensen and G. Mingione, The singular set of minima of integral functionals. Arch. Ration. Mech. Anal. 180 (2006), 331–398.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Kristensen and G. Mingione, Boundary regularity in variational problems. Arch. Ration. Mech. Anal. 198 (2010), 369–455.

    Article  MATH  MathSciNet  Google Scholar 

  23. T. Kuusi and G. Mingione, Linear potentials in nonlinear potential theory. Arch. Ration. Mech. Anal. 207 (2013), 215–246.

    Article  MATH  MathSciNet  Google Scholar 

  24. T. Kuusi and G. Mingione, Riesz potentials and nonlinear parabolic equations. Arch. Ration. Mech. Anal. 212 (2014), 727–780.

    Article  MATH  MathSciNet  Google Scholar 

  25. T. Kuusi and G. Mingione, A nonlinear Stein theorem. Calc. Var. Partial Differential Equations 51 (2014), 45–86.

    Article  MATH  MathSciNet  Google Scholar 

  26. T. Kuusi and G. Mingione, Guide to nonlinear potential estimates. Bull. Math. Sci. 4 (2014), 1–82.

    Article  MathSciNet  Google Scholar 

  27. J. J. Manfredi, Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations. PhD thesis, University of Washington, St. Louis, 1986.

  28. J. J. Manfredi, Regularity for minima of functionals with p-growth. J. Differential Equations 76 (1998), 203–212.

    Article  MathSciNet  Google Scholar 

  29. V. G. Maz’ya and V. P. Khavin, Non-linear potential theory. Russian Math. Surveys 27 (1972), 71–148.

    Article  Google Scholar 

  30. G. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations. Appl. Math. 51 (2006), 355–426.

    Article  MATH  MathSciNet  Google Scholar 

  31. G. Mingione, Gradient potential estimates. J. Eur. Math. Soc. (JEMS) 13 (2011), 459–486.

    MATH  MathSciNet  Google Scholar 

  32. E. M. Stein, Editor’s note: The differentiability of functions in \({\mathbb{R}^{n}}\). Ann. of Math. (2) 113 (1981), 383–385.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Mingione.

Additional information

To Haïm Brezis, a master of nonlinear analysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baroni, P., Kuusi, T. & Mingione, G. Borderline gradient continuity of minima. J. Fixed Point Theory Appl. 15, 537–575 (2014). https://doi.org/10.1007/s11784-014-0188-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-014-0188-x

Mathematics Subject Classification

Keywords

Navigation