Skip to main content
Log in

On the formation of fibrous capsule and fluid space around machined and porous blood plasma clot coated titanium

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Machined and machined submicron porous titanium, with and without a thin blood plasma coating (100 nm), were implanted for 7 or 28 days in subcutaneous pockets on the back of the rat. After explantation the specimens were analyzed by light microscopy with respect to thickness of the fibrous capsule, the fluid space width between implants and fibrous capsule, and formation of blood vessels. The results at 7 days indicate a thinnest fluid space for the plasma clot coated porous titanium surface, and the spaces vanished at the light microscopic level after 28 days outside all the analyzed surfaces. The thickness of the fibrous capsule increased outside the different surfaces at 7–28 days, and in this respect no significant differences were observed between the different surfaces at any time. Analysis of neovascularization showed that the number of vessels and proportion of vessels in the fibrous capsule increased with time at all surfaces, except machined Ti where the number instead decreased from 7 to 28 days. The average distance between the blood vessels and the fluid space increased with time for all types of surfaces. The results in the present study indicate that the healing process around titanium can be modulated by porosity and thin pre-prepared plasma coatings.

© Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Black and G. Hastings, in “Handbook of Biomaterial Properties” (Chapman & Hall, 1998).

  2. A. Rosengren, N. Danielsen and L. M. Bjursten, Biomaterials 18 (1997) 979.

    Google Scholar 

  3. B. Chehroudi, E. Soorany, N. Black, L. Weston and D. M. Brunette, J. Biomed. Mater. Res. 29 (1995) 371.

    Google Scholar 

  4. T. G. Van Kooten and A. F. Von Recum, Tissue Eng. 5 (1999) 223.

    Google Scholar 

  5. V. Maquet and R. Jerome, in “Porous Materials for Tissue Engineering” (Materials Science Forum, 1997) p. 15.

  6. R. G. Flemming, C. J. Murphy, G. A. Abrams, S. L. Goodman and P. F. Nealey, Biomaterials 20 (1999) 573.

    Google Scholar 

  7. F. N. Rowland, M. J. Donovan, C. Gillies, J. O'Rourke AND D. L. Kreutzer, Curr. Eye Res. 4 (1985) 537.

    Google Scholar 

  8. A. C. Guyton, AND J. E. Hall, “Textbook of Medical Physiology 9th ed.” (Saunders, USA, 1996).

    Google Scholar 

  9. M. Brittberg, E. SjÖgren-Jansson, A. Lindahl and L. Peterson, Biomaterials 18 (1997) 235.

    Google Scholar 

  10. R. P. Lanza, R. Langer and W. L. Chick, in “Principles of Tissue Engineering” (R. G. Landes Company and Academic Press, Austin, 1997).

    Google Scholar 

  11. K. I. Cohen, R. F. Diegelmann and W. J. Lindblad, in “Wound Healing Biochemical and Clinical Aspects” (W. B. Saunders Company, 1992).

  12. E. Jansson and P. Tengvall, Biomaterials 22 (2001) 1803-1808.

    Google Scholar 

  13. S. Nishiguchi, T. Nakamura, M. Kobayashi, H.-M. Kim, F. Miyaji and T. Kokubo, Biomaterials 20 (1999) 491.

    Google Scholar 

  14. A. Nanci, J. D. Wuest, L. Peru, P. Brunet, V. Sharma, S. Zalzal and M. D. Mckee, J. Biomed. Mater. Res. 40 (1998) 324.

    Google Scholar 

  15. K. Endo, Dental Mater. J. 14 (1995) 1999.

    Google Scholar 

  16. H. H. Weetall, Appl. Biochem. Biotechnol. 41 (1993) 157.

    Google Scholar 

  17. U. JÖnsson, G. Olofsson, M. Malmqvist and I. RÖnnberg, Thin Solid Films 124 (1985) 117.

    Google Scholar 

  18. L. M. Bjursten, L. Emanuelsson, L. E. Ericson, P. Thomsen, J. Lausmaa, L. Mattsson, U. Rolander and B. Kasemo, Biomaterials 11 (1990) 596.

    Google Scholar 

  19. K. C. Richardson, L. Jarett and E. H. Finke, in “Stain Technology” (The Williams and Wilkins Company, Baltimore, 1960), p. 313.

    Google Scholar 

  20. D. G. Altieri, in “Practical Statistics for Medical Research” (Chapman and Hall, London, 1997).

    Google Scholar 

  21. C. B. Johansson, T. Albrektsson, L. E. Ericson and P. Thomsen, J. Mater. Sci.: Mater. Med. 3 (1992) 126.

    Google Scholar 

  22. T. RÖstlund, P. Thomsen, L. M. Bjursten and L. E. Ericson, J. Biomed. Mater. Res. 24 (1990) 847.

    Google Scholar 

  23. A. Rosengren, B. R. Johansson, P. Thomsen and L. E. Ericson, Biomaterials 15 (1994) 17.

    Google Scholar 

  24. A. Rosengren, B. R. Johansson, N. Danielsen, P. Thomsen and L. E. Ericson, ibid. 17 (1996) 1779.

    Google Scholar 

  25. M. Therin, A. Meunier and P. Christel, J. Mater. Sci.: Mater Med 2 (1991) 1.

    Google Scholar 

  26. A. Rosengren, N. Danielsen and L. M. Bjursten, ibid. 9 (1998) 415.

    Google Scholar 

  27. A. F. Von Recum, in “Clinical Implant Materials, Advances in Biomaterials”, edited by G. Heimke, U. Soltesz, A. J. C. Lee (Elsevier Science Publishers BV, Amsterdam, 1990) p. 297.

    Google Scholar 

  28. M. Mohanty, J. A. Hunt, P. J. Doherty, D. Annis and D. F. Williams, Biomaterials 13 (1992) 651.

    Google Scholar 

  29. G. J. Picha and R. F. Drake, J. Biomed. Mater. Res. 30 (1996) 305.

    Google Scholar 

  30. R. M. Brohim, P. A. Foresman, P. K. Hildebrandt and G. T. Rodeheaver, Ann. Plast. Surg. 28 (1992) 354.

    Google Scholar 

  31. A. Rosengren, N. Danielsen, H. Persson, M. Kober and L. M. Bjursten, J. Mater. Sci.: Mater. Med. 10 (1999) 75.

    Google Scholar 

  32. A. Rosengren, in “Tissue Reactions to Biomaterials” (Ph.D. Thesis, Lund University, Sweden, 1997).

    Google Scholar 

  33. B. WÄlivaara, B. O. Aronsson, M. Rodahl, J. Lausmaa and P. Tengvall, Biomaterials 15 (1994) 827.

    Google Scholar 

  34. Y. A. Rovensky, I. L. Slavnaja and J. M. Vasiliev, Exp. Cell. Res. 65 (1971) 193.

    Google Scholar 

  35. H. L. Hong and D. Brunette, J. Cell Sci. 87 (1987) 259.

    Google Scholar 

  36. Y. C. Paquay, J. E. De Ruijter, J. P. Van Der Waerden and J. A. Jansen, Biomaterials 17 (1996) 1251.

    Google Scholar 

  37. J. H. Brauker, V. E. Carr-Brendel, L. A. Martinson, J. Crudele, W. D. Johnston and R. C. Johnson, J. Biomed. Mater. Res. 29 (1995) 1517.

    Google Scholar 

  38. B. Chehroudi, T. R. Gould and D. M. Brunette, ibid. 24 (1990) 1203.

    Google Scholar 

  39. A. UngersbÖck, O. Pohler and S. M. Perren, Bio-Med. Mater. Eng. 4 (1994) 317.

    Google Scholar 

  40. J. A. Jansen, A. F. Von Recum, J. P. C. M. Van Der Waerden and K. De Groot, Biomaterials 13 (1992) 959.

    Google Scholar 

  41. M. S. Hirschorn, L. K. Holley and D. K. Money, J. Biomed. Mater. Res. 18 (1984) 47.

    Google Scholar 

  42. A. A. Sharkaway, B. Klitzman, G. A. Truskey and W. M. Reichert, ibid. 40(4) 586-597, (1998).

    Google Scholar 

  43. D. L. Satzmann, L. B. Kleinert, S. S. Berman, S. K. Williams, Cardiovascular Pathology 8(2) (1999) 63-71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Jansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansson, E., Källtorp, M., Johansson, A. et al. On the formation of fibrous capsule and fluid space around machined and porous blood plasma clot coated titanium. Journal of Materials Science: Materials in Medicine 12, 1019–1024 (2001). https://doi.org/10.1023/A:1012885805001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012885805001

Keywords

Navigation