Skip to main content

Advertisement

Log in

Ultraviolet photofunctionalization of nanostructured titanium surfaces enhances thrombogenicity and platelet response

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate blood and platelet response to nanostructured TiO2 coatings and to investigate the effect of Ultraviolet (UV) light treatment on blood clotting ability, platelet activation and protein adhesion. Ti-6Al-4V titanium alloy plates (n = 138) were divided into three groups; a sol–gel derived MetAliveTM coating (MA); hydrothermal coating (HT); and a non-coated group (NC). Sixty nine titanium substrates were further treated with UV light for 1 h. The thrombogenicity of the titanium substrates was assessed using fresh human blood with a whole blood kinetic clotting time method. The platelet adhesion test was conducted to evaluate the morphology and adhesion behavior of the platelets on the titanium substrates. Human diluted plasma and bovine fibronectin were used to evaluate protein adsorption. Total clotting time for the UV treated HT, MA and NC titanium substrates was almost 40 min compared to 60 min for non-UV substrates, the total clotting time for the UV treated groups were significantly lower than that of the non UV NC group (p < 0.05). UV light treatment had significantly enhanced coagulation rates. The HT and MA substrates presented more platelet aggregation, spreading and pseudopod formation in comparison with the NC substrates. UV treatment did not affect the platelet activation and protein adsorption. This in vitro study concluded that nanostructured titanium dioxide implant surfaces obtained by sol–gel and hydrothermal coating methods increased coagulation rates and enhanced platelet response when compared with non-coated surfaces. UV light treatment clearly improved thrombogenicity of all examined Ti-6Al-4V surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Di Iorio D, Traini T, Degidi M, Caputi S, Neugebauer J, Piattelli A. Quantitative evaluation of the fibrin clot extension on different implant surfaces: an in vitro study. J Biomed Mater Res B Appl Biomater. 2005;74:636–42.

    Article  Google Scholar 

  2. Park JY, Davies JE. Red blood cell and platelet interactions with titanium implant surfaces. Clin Oral Implants Res. 2000;11:530–9.

    Article  CAS  Google Scholar 

  3. Thor A, Rasmusson L, Wennerberg A, et al. The role of whole blood in thrombin generation in contact with various titanium surfaces. Biomaterials. 2007;28:966–74.

    Article  CAS  Google Scholar 

  4. Hong J, Andersson J, Ekdahl KN, et al. Titanium is a highly thrombogenic biomaterial: possible implications for osteogenesis. Thromb Haemost. 1999;82:58–64.

    Article  CAS  Google Scholar 

  5. Drinker CK, Drinker KR, Lund CC. The circulation in the mammalian bone-marrow. Am J Physiol-Leg Content. 1922;62:1–92.

    Article  Google Scholar 

  6. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont. 1998;11:391–401.

    CAS  Google Scholar 

  7. Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8:3888–903.

    Article  CAS  Google Scholar 

  8. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng: R: Rep. 2004;47:49–121.

    Article  Google Scholar 

  9. Ellingsen JE. A study on the mechanism of protein adsorption to TiO2. Biomaterials. 1991;12:593–6.

    Article  CAS  Google Scholar 

  10. Klinger A, Steinberg D, Kohavi D, Sela MN. Mechanism of adsorption of human albumin to titanium in vitro. J Biomed Mater Res. 1997;36:387–92.

    Article  CAS  Google Scholar 

  11. Steinberg D, Klinger A, Kohavi D, Sela MN. Adsorption of human salivary proteins to titanium powder. I. Adsorption of human salivary albumin. Biomaterials. 1995;16:1339–43.

    Article  CAS  Google Scholar 

  12. Tomsia AP, Lee JS, Wegst UG, Saiz E. Nanotechnology for dental implants. Int J Oral Maxillofac Implants. 2013;28:e535–46.

    Article  Google Scholar 

  13. Kubo K, Tsukimura N, Iwasa F, et al. Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model. Biomaterials. 2009;30:5319–29.

    Article  CAS  Google Scholar 

  14. Jimbo R, Sawase T, Baba K, Kurogi T, Shibata Y, Atsuta M. Enhanced initial cell responses to chemically modified anodized titanium. Clin Implant Dent Relat Res. 2008;10:55–61.

    Article  Google Scholar 

  15. Peltola T, Patsi M, Rahiala H, Kangasniemi I, Yli-Urpo A. Calcium phosphate induction by sol-gel-derived titania coatings on titanium substrates in vitro. J Biomed Mater Res. 1998;41:504–10.

    Article  CAS  Google Scholar 

  16. Kim HM, Miyaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res. 1996;32:409–17.

    Article  CAS  Google Scholar 

  17. Zuldesmi M, Waki A, Kuroda K, Okido M. Hydrothermal treatment of titanium alloys for the enhancement of osteoconductivity. Mater Sci Eng C Mater Biol Appl. 2015;49:430–5.

    Article  CAS  Google Scholar 

  18. Hoshi N, Negishi H, Okada S, Nonami T, Kimoto K. Response of human fibroblasts to implant surface coated with titanium dioxide photocatalytic films. J Prosthodont Res. 2010;54:185–91.

    Article  Google Scholar 

  19. Werner S, Huck O, Frisch B, Vautier D, Elkaim R, Voegel JC, Brunel G, Tenenbaum H. The effect of microstructured surfaces and laminin-derived peptide coatings on soft tissue interactions with titanium dental implants. Biomaterials. 2009;30:2291–301.

    Article  CAS  Google Scholar 

  20. Botos S, Yousef H, Zweig B, Flinton R, Weiner S. The effects of laser microtexturing of the dental implant collar on crestal bone levels and peri-implant health. Int J Oral Maxillofac Implants. 2011;26:492–8.

    Google Scholar 

  21. Frojd V, Linderback P, Wennerberg A, Chavez de Paz L, Svensater G, Davies JR. Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation. BMC Oral Health. 2011;11:8–6831-11-8.

    Article  Google Scholar 

  22. Schupbach P, Glauser R. The defense architecture of the human periimplant mucosa: A histological study. J Prosthet Dent. 2007;97:S15–25.

    Article  Google Scholar 

  23. Welander M, Abrahamsson I, Berglundh T. The mucosal barrier at implant abutments of different materials. Clin Oral Implants Res. 2008;19:635–41.

    Google Scholar 

  24. Zreiqat H, Howlett CR. Titanium substrata composition influences osteoblastic phenotype: in vitro study. J Biomed Mater Res. 1999;47:360–6.

    Article  CAS  Google Scholar 

  25. Kasemo B. Biocompatibility of titanium implants: surface science aspects. J Prosthet Dent. 1983;49:832–7.

    Article  CAS  Google Scholar 

  26. Gittens RA, Scheideler L, Rupp F, et al. A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomater. 2014;10:2907–18.

    Article  CAS  Google Scholar 

  27. Kohavi D, Badihi Hauslich L, Rosen G, Steinberg D, Sela MN. Wettability versus electrostatic forces in fibronectin and albumin adsorption to titanium surfaces. Clin Oral Impl Res. 2013;24:1002–8.

    Google Scholar 

  28. Eriksson C, Nygren H, Ohlson K. Implantation of hydrophilic and hydrophobic titanium discs in rat tibia: cellular reactions on the surfaces during the first 3 weeks in bone. Biomaterials. 2004;25:4759–66.

    Article  CAS  Google Scholar 

  29. Bornstein MM, Valderrama P, Jones AA, Wilson TG, Seibl R, Cochran DL. Bone apposition around two different sandblasted and acid-etched titanium implant surfaces: a histomorphometric study in canine mandibles. Clin Oral Implants Res. 2008;19:233–41.

    Article  Google Scholar 

  30. Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ. Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Eng. 2005;11:1–18.

    Article  CAS  Google Scholar 

  31. Guida L, Oliva A, Basile MA, Giordano M, Nastri L, Annunziata M. Human gingival fibroblast functions are stimulated by oxidized nano-structured titanium surfaces. J Dent. 2013;41:900–7.

    Article  CAS  Google Scholar 

  32. Areva S, Peltola T, Säilynoja E, Laajalehto K, Lindén M, Rosenholm JB. Effect of albumin and fibrinogen on calcium phosphate formation on sol−gel-derived titania coatings in vitro. Chem Mater. 2002;14:1614–21.

    Article  CAS  Google Scholar 

  33. Meretoja VV, Rossi S, Peltola T, Pelliniemi LJ, Narhi TO. Adhesion and proliferation of human fibroblasts on sol-gel coated titania. J Biomed Mater Res A. 2010;95:269–75.

    Article  CAS  Google Scholar 

  34. Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 1. 2005;44:8269–85.

    Article  CAS  Google Scholar 

  35. Riley D, Bavastrello V, Covani U, Barone A, Nicolini C. An in vitro study of the sterilization of titanium dental implants using low intensity UV-radiation. Dent Mater. 2005;21:756–60.

    Article  CAS  Google Scholar 

  36. Unosson E, Persson C, Welch K, Engqvist H. Photocatalytic activity of low temperature oxidized Ti-6Al-4V. J Mater Sci: Mater Med. 2012;23:1173–80.

    CAS  Google Scholar 

  37. Fujishima A, Zhang X, Tryk DA. TiO2 photocatalysis and related surface phenomena. Surf Sci Rep. 2008;63:515–82.

    Article  CAS  Google Scholar 

  38. Suketa N, Sawase T, Kitaura H, et al. An antibacterial surface on dental implants, based on the photocatalytic bactericidal effect. Clin Implant Dent Relat Res. 2005;7:105–11.

    Article  Google Scholar 

  39. Aita H, Hori N, Takeuchi M. et al. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials. 2009;30:1015–25.

    Article  CAS  Google Scholar 

  40. Aita H, Att W, Ueno T, et al. Ultraviolet light-mediated photofunctionalization of titanium to promote human mesenchymal stem cell migration, attachment, proliferation and differentiation. Acta Biomater. 2009;5:3247–57.

    Article  CAS  Google Scholar 

  41. Hori N, Ueno T, Suzuki T, et al. Ultraviolet light treatment for the restoration of age-related degradation of titanium bioactivity. Int J Oral Maxillofac Implants. 2010;25:49–62.

    Google Scholar 

  42. Ogawa T. Ultraviolet photofunctionalization of titanium implants. Int J Oral Maxillofac Implants. 2014;29:e95–102.

    Article  Google Scholar 

  43. Wu J, Zhou L, Ding X, Gao Y, Liu X. Biological effect of ultraviolet photocatalysis on nanoscale titanium with a focus on physicochemical mechanism. Langmuir. 2015;31:10037–46.

    Article  CAS  Google Scholar 

  44. Yamada Y, Yamada M, Ueda T, Sakurai K. Reduction of biofilm formation on titanium surface with ultraviolet-C pre-irradiation. J Biomater Appl. 2014;29:161–71.

    Article  CAS  Google Scholar 

  45. Jokinen M, Patsi M, Rahiala H, Peltola T, Ritala M, Rosenholm JB. Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposited by dip-coating method. J Biomed Mater Res. 1998;42:295–302.

    Article  CAS  Google Scholar 

  46. de Jong HP, van Pelt AW, Arends J. Contact angle measurements on human enamel - an in vitro study of influence of pellicle and storage period. J Dent Res. 1982;61:11–3.

    Article  Google Scholar 

  47. Huang N, Yang P, Leng YX, et al. Hemocompatibility of titanium oxide films. Biomaterials. 2003;24:2177–87.

    Article  CAS  Google Scholar 

  48. Imai Y, Nose Y. A new method for evalution of antithrombogenicity of materials. J Biomed Mater Res. 1972;6:165–72.

    Article  CAS  Google Scholar 

  49. Tanner J, Carlen A, Soderling E, Vallittu PK. Adsorption of parotid saliva proteins and adhesion of streptococcus mutans ATCC 21752 to dental fiber-reinforced composites. J Biomed Mater Res B Appl Biomater. 2003;66:391–8.

    Article  Google Scholar 

  50. Park JY, Gemmell CH, Davies JE. Platelet interactions with titanium: modulation of platelet activity by surface topography. Biomaterials. 2001;22:2671–82.

    Article  CAS  Google Scholar 

  51. Sharma CP. Surface--interface energy contributions to blood compatibility. Biomater Med Devices Artif Organs. 1984;12:197–213.

    Article  Google Scholar 

  52. Zhao G, Schwartz Z, Wieland M, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A. 2005;74:49–58.

    Article  CAS  Google Scholar 

  53. Wang R, Hashimoto K, Fujishima A. Light-induced amphiphilic surfaces. Nature. 1997;388:431–2.

    Article  CAS  Google Scholar 

  54. Iwasa F, Hori N, Ueno T, Minamikawa H, Yamada M, Ogawa T. Enhancement of osteoblast adhesion to UV-photofunctionalized titanium via an electrostatic mechanism. Biomaterials. 2010;31:2717–27.

    Article  CAS  Google Scholar 

  55. Hori N, Ueno T, Minamikawa H, et al. Electrostatic control of protein adsorption on UV-photofunctionalized titanium. Acta Biomater. 2010;6:4175–80.

    Article  CAS  Google Scholar 

  56. Wennerberg A, Albrektsson T. On implant surfaces: A review of current knowledge and opinions. Int J Oral Maxillofac Implants. 2010;25:63–74.

    Google Scholar 

  57. Goodman SL, Lelah MD, Lambrecht LK, Cooper SL, Albrecht RM. In vitro vs. ex vivo platelet deposition on polymer surfaces. Scan Electron Microsc. 1984;1:279–90.

    Article  Google Scholar 

  58. Nygren H, Tengvall P, Lundstrom I. The initial reactions of TiO2 with blood. J Biomed Mater Res. 1997;34:487–92.

    Article  CAS  Google Scholar 

  59. Chen J, Yang P, Liao Y, et al. Effect of the duration of UV irradiation on the anticoagulant properties of titanium dioxide films. ACS Appl Mater Interfaces. 2015;7:4423–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Ms. Katja Sampalahti, and Ms. Oona Hällfors (Institute of Dentistry, University of Turku) for their skillful technical assistance. The corresponding author wishes to thank the Libyan Ministry of Education for its scholarship support. This study was supported by ITI Grant no: 1256_2017

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagat Areid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with respect to the authorship and/or publication of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Areid, N., Kangasniemi, I., Söderling, E. et al. Ultraviolet photofunctionalization of nanostructured titanium surfaces enhances thrombogenicity and platelet response. J Mater Sci: Mater Med 29, 56 (2018). https://doi.org/10.1007/s10856-018-6067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6067-z

Navigation