Skip to main content
Log in

Effect of Crack Propagation Directions on the Interlaminar Fracture Toughness of Carbon/Epoxy Composite Materials

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The interlaminar fracture toughness of carbon/epoxy composite materials has been studied under tensile and flexural loading using width-tapered double cantilever beam (WTDCB) and end-notched flexure (ENF) specimens. This study experimentally examines the effect of various interfacial ply orientations, α (0°, 45° and 90°) and crack propagation directions, θ (0°, 15°, 30° and 45°) in terms of the critical strain energy release rate. Twelve differently layered laminates were investigated. The fracture energy is deduced from the data according to the compliance method and beam theory. Beam theory is used to analyze the effect of crack propagation direction. The geometry and lay-up sequence of specimens are designed to probe various conditions such as skewness parameter and beam volume. Results show that fiber bridging occurred due to non-midplane crack propagation; this causes the difference in fracture energy calculated by both methods. For the construction of safer and more reliable composite structures, we obtain the optimal stacking sequence from the initial fracture energy in each mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, B. D. and Broutman, L, J., Analysis and Performance of Fiber Composites, 2nd ed., John Wiley & Sons, 1990.

  2. Friedrich, K. (ed.), Application of Fracture Mechanics to Composite Materials, Composite Materials Series, Volume 6, Series editor: Pipes, R. B., Elsevier Science Publishers B.V., 1989, pp. 81–157.

  3. Huang, X. N. and Hull, D., 'Effects of fibre bridging on G IC of a unidirectional glass/epoxy composite', Composites Science and Technology 35, 1989, 283–299.

    Google Scholar 

  4. Russell, A. J. and Street, K. N., 'Moisture and Temperature Effects on the Mixed-Mode Delamination Fracture of Unidirectional Graphite/Epoxy', Delamination and Debonding of Materials, ASTM STP 876, Editor: Johnson, W. S., 1985, pp. 349–370.

  5. Hudson, R. C., Davidson, B. D., and Polaha, J. J., 'Effect of remote ply orientation on the perceived Mode I and Mode II toughness of θ/θ and θ/—θ interfaces', Applied Composite Materials 5, 1998, 123–138.

    Google Scholar 

  6. Arcan, L., Arcan, M., and Daniel, I. M., 'sEM Fractography of Pure and Mixed-Mode Interlaminar Fractures in Graphite/Epoxy Composites', Fractography of Modern Engineering Materials: Composites and Metals, ASTM STP 948, Editors: Masters, J. E. and Au, J. J., 1987, pp. 41–67.

  7. Hibbs, M. F. and Bradley, W. L., 'Correlations Between Micromechanical Failure Processes and the Delamination Toughness of Graphite/Epoxy Systems', Fractography of Modern Engineering Materials: Composites and Metals, ASTM STP 948, Editors: Masters, J. E. and Au, J. J., 1987, pp. 68–97.

  8. Smith, B. W. and Grove, R. A., 'Determination of Crack Propagation Directions in Graphite/Epoxy Structures', Fractography of Modern Engineering Materials: Composites and Metals, ASTM STP 948, Editors: Masters, J. E. and Au, J. J., 1987, pp. 154–173.

  9. Bascom, W. D., Boll, D. J., Hunston, D. L., Fuller, B., and Phillips, P. J., 'Fractographic Analysis of Interlaminar Fracture', Toughened Composites, ASTM STP 937, Editor: Johnston, N. J., 1987, pp. 131–149.

  10. Gilchrist, M. D. and Svensson, N., 'A fractographic analysis of delamination within multidirectional carbon/epoxy laminates', Composites Science and Technology 55, 1995, 195–207.

    Google Scholar 

  11. Ozdil, F., Carlsson, L. A., and Davies, P., 'Beam analysis of angle-ply laminate end-notched flexure specimens', Composite Science and Technology 58, 1998, 1929–1938.

    Google Scholar 

  12. Wang, A. S. D., Slomiana, M., and Bucinell, R. B., 'Delamination Crack Growth in Composite Laminates', Delamination and Debonding of Materials, ASTM STP 876, Editor: Johnson, W. S., 1985, pp. 135–167.

  13. Liu, S., Kutlu, Z., and Chang, F. K., 'Matrix cracking and delamination in laminated composite beams subjected to a transverse concentrated line load', Journal of Composite Materials 27(5), 1993, 436–470.

    Google Scholar 

  14. Davidson, B. D., Krüger, R., and König, M., 'Three-dimensional analysis of center-delaminated unidirectional and multidirectional single-leg bending specimens', Composite Science and Technology 54, 1995, 385–394.

    Google Scholar 

  15. Han, K. S. and Koutsky, J., 'The interlaminar fracture energy of glass fiber reinforced polyester composites', Journal of Composite Materials 15, 1981, 371–388.

    Google Scholar 

  16. Lee, S. M., 'A comparison of fracture toughness of matrix controlled failure modes: delamination and transverse cracking', Journal of Composite Materials 20, 1986, 185–196.

    Google Scholar 

  17. Maikuma, H., Gillespie, Jr., J. W., and Wilkins, D. J., 'Mode II interlaminar fracture of the center notch flexural specimen under impact loading', Journal of Composite Materials 24, 1990, 124–149.

    Google Scholar 

  18. Trethewey, Jr., B. R., Gillespie, Jr., J. W., and Carlsson, L. A., 'Mode II Cyclic Delamination Growth', Delamination in Advanced Composites, Editor: Newaz, G. M., Technomic Publishing Co., Inc., 1991, pp. 252–276.

  19. Bascom, W. D., Bitner, J. L., Moulton, R. J., and Siebert, A. R., 'The interlaminar fracture of organic-matrix, woven reinforcement composites', Composites 11, 1980, 9–18.

    Google Scholar 

  20. Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites (ASTM D 5528), Annual Book of ASTM Standards, Vol. 15.03, 1994.

  21. Devit, D. F., Schapery, R. A., and Bradley, W. L., 'A Method for determining the Mode I delamination fracture toughness of elastic and viscoelastic composite materials', Journal of Composite Materials 14, 1980, 270–285.

    Google Scholar 

  22. Carlsson, L. A., Gillespie, Jr., J. W., and Pipes, R. B., 'On the analysis and design of the end notched flexure (ENF) specimen for Mode II testing', Journal of Composite Materials 20, 1986, 594–604.

    Google Scholar 

  23. Hwang, W. and Han, K. S., 'Interlaminar fracture behavior and fiber bridging of glass-epoxy composite under Mode I static and cyclic loadings', Journal of Composite Materials 23, 1989, 396–430.

    Google Scholar 

  24. Carlsson, L. A., Gillespie, J. W., and Trethewey, B. R., 'Mode II interlaminar fracture of graphite/epoxy and graphite/PEEK', Journal of Reinforced Plastics and Composites 5, 1986, 170–187.

    Google Scholar 

  25. Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods (ASTM E 177), Annual Book of ASTM Standards, Vol. 14.02, 1990.

  26. Sun, C. T. and Zheng, S., 'Delamination characteristics of double-cantilever beam and end-notched flexure composite specimens', Composites Science and Technology 56, 1996, 451–459.

    Google Scholar 

  27. Li, Y., Li, S., Xiao, J., and Tao, J., 'study on the Mode I Interlaminar Fracture Toughness of Multi-directional Laminates', Proceedings of ICCM-11, Volume II: Fatigue, Fracture and CeramicMatrix Composites, Editor: Scott, M. L.,Australia, 14th-18th July 1997, pp. 431–437.

  28. Hojo, M., Kageyama, K., and Tanaka, K., 'Prestandardization study on Mode I interlaminar fracture toughness test for CFRP in Japan', Composites 26(4), 1995, 243–255.

    Google Scholar 

  29. Tanaka, K., Kageyama, K., and Hojo, M., 'Prestandardization study on Mode II interlaminar fracture toughness test for CFRP in Japan', Composites 26(4), 1995, 257–267.

    Google Scholar 

  30. Johnson, W. S. and Mangalgiri, P. D., 'Investigation of fiber bridging in double cantilever beam specimens', Journal of Composites Technology and Research 9(1), 1987, 10–13.

    Google Scholar 

  31. Hashemi, S., Kinloch, A. J., and Williams, J. G., 'Mechanics and mechanisms of delamination in a poly(ether sulphone)-fibre composite', Composites Science and Technology 37, 1990, 429–462.

    Google Scholar 

  32. Tohgo, K., Hirako, Y., Ishii, H., and Sano, K., 'Mode I interlaminar fracture toughness and fracture mechanism of angle-ply carbon/nylon laminates', Journal of Composite Materials 30(6), 1996, 650–661.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, J.H., Lee, C.S. & Hwang, W. Effect of Crack Propagation Directions on the Interlaminar Fracture Toughness of Carbon/Epoxy Composite Materials. Applied Composite Materials 8, 411–433 (2001). https://doi.org/10.1023/A:1012663722334

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012663722334

Navigation