Skip to main content
Log in

Experimental and numerical investigation into interlaminar toughening effect of chopped fiber-interleaved flax fiber reinforced composites

短纤维插层对亚麻纤维增强复合材料层间增韧效果的实验与数值仿真研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Effects of various chopped fiber (CF) interleaves, including CF type, CF length, and interleave areal density on mode I interlaminar toughening for flax fiber reinforced composites were studied via the double cantilever beam (DCB) experiment and simulation. The CF interleaved flax/epoxy composites were made by interleaving CFs randomly and uniformly in the mid-layer. A numerical model subject to the experiment was established involving the trilinear cohesive zone model (CZM) characterized by five parameters. The mode I interlaminar fracture toughness (GIC) was furthest improved up to 2.322 kJ/m2 by 80.7% using carbon CF interleave with 5 mm CF length and 25 g/m2 areal density. The toughening mechanisms related to fiber bridging and flax multi-layer failure were discussed regarding different CF interleaves. Comparative analysis of numerical and experimental results revealed the quantitative relation between CZM parameters and CF interleave properties, providing guidance for designing CF interlaminar toughening.

摘要

本文分别通过双悬臂梁(DCB)实验与数值模拟, 研究了不同短纤维插层(包括短纤维种类、 短纤维长度与插层面密度)对亚麻纤维增强复合材料I型层间断裂韧性的影响规律. DCB试验结果表明, 当插层为5 mm长度、 25 g/m2面密度的短碳纤维插层时, 复合材料I型层间断裂韧性达到2.322 kJ/m2, 取得最大提升幅度80.7%, 短纤维桥联与亚麻连续纤维多层级破坏为其主要增韧机理. 在此基础上, 采用五参数控制的三线性内聚力单元, 建立了数值仿真模型. 实验与数值模拟结果的对比分析揭示了短纤维插层属性与内聚力模型参数之间的定量关系, 可为植物纤维增强复合材料短纤维插层增韧设计提供参考依据.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Faruk, A. K. Bledzki, H. P. Fink, and M. Sain, Biocomposites reinforced with natural fibers: 2000–2010, Prog. Polym. Sci. 37, 1552 (2012).

    Article  Google Scholar 

  2. W. Shen, Z. Tang, X. Wu, L. Pan, Y. Cheng, B. Huo, J. Song, W. Chen, B. Ji, and D. Li, An atomistic model of silk protein network for studying the effect of pre-stretching on the mechanical performances of silks, Acta Mech. Sin. 38, 222013 (2022).

    Article  Google Scholar 

  3. K. L. Pickering, M. G. A. Efendy, and T. M. Le, A review of recent developments in natural fibre composites and their mechanical performance, Compos. Part A-Appl. Sci. Manuf. 83, 98 (2016).

    Article  Google Scholar 

  4. L. Yan, N. Chouw, and K. Jayaraman, Flax fibre and its composites–A review, Compos. Part B-Eng. 56, 296 (2014).

    Article  Google Scholar 

  5. Y. Li, C. Chen, J. Xu, Z. Zhang, B. Yuan, and X. Huang, Improved mechanical properties of carbon nanotubes-coated flax fiber reinforced composites, J. Mater. Sci. 50, 1117 (2015).

    Article  Google Scholar 

  6. F. Omrani, P. Wang, D. Soulat, and M. Ferreira, Mechanical properties of flax-fibre-reinforced preforms and composites: Influence of the type of yarns on multi-scale characterisations, Compos. Part A-Appl. Sci. Manuf. 93, 72 (2017).

    Article  Google Scholar 

  7. Y. Zhou, M. Fan, and L. Chen, Interface and bonding mechanisms of plant fibre composites: An overview, Compos. Part B-Eng. 101, 31 (2016).

    Article  Google Scholar 

  8. B. Koohestani, A. K. Darban, P. Mokhtari, E. Yilmaz, and E. Darezereshki, Comparison of different natural fiber treatments: a literature review, Int. J. Environ. Sci. Technol. 16, 629 (2019).

    Article  Google Scholar 

  9. M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview, Compos. Part B-Eng. 43, 2883 (2012).

    Article  Google Scholar 

  10. Y. Jin, G. Xu, and J. H. Song, Improvement of tensile and bending properties by hot alkali surface treatment for structural flax composites, J. Nat. Fibers 19, 9845 (2022).

    Article  Google Scholar 

  11. D. W. Y. Wong, L. Lin, P. T. McGrail, T. Peijs, and P. J. Hogg, Improved fracture toughness of carbon fibre/epoxy composite laminates using dissolvable thermoplastic fibres, Compos. Part A-Appl. Sci. Manuf. 41, 759 (2010).

    Article  Google Scholar 

  12. C. Chen, Y. Li, and T. Yu, Interlaminar toughening in flax fiber-reinforced composites interleaved with carbon nanotube buckypaper, J. Reinforced Plast.s Compos. 33, 1859 (2014).

    Article  Google Scholar 

  13. Z. Zhou, D. Gao, G. Lin, and W. Sun, Static and dynamic mechanical properties of epoxy nanocomposites reinforced by hybridization with carbon nanofibers and block ionomers, Eng. Fract. Mech. 271, 108638 (2022).

    Article  Google Scholar 

  14. M. Ravandi, W. S. Teo, L. Q. N. Tran, M. S. Yong, and T. E. Tay, The effects of through-the-thickness stitching on the Mode I interlaminar fracture toughness of flax/epoxy composite laminates, Mater. Des. 109, 659 (2016).

    Article  Google Scholar 

  15. R. B. Ladani, K. Pingkarawat, A. T. T. Nguyen, C. H. Wang, and A. P. Mouritz, Delamination toughening and healing performance of woven composites with hybrid z-fibre reinforcement, Compos. Part A-Appl. Sci. Manuf. 110, 258 (2018).

    Article  Google Scholar 

  16. A. P. Mouritz, Review of z-pinned laminates and sandwich composites, Compos. Part A-Appl. Sci. Manuf. 139, 106128 (2020).

    Article  Google Scholar 

  17. Z. Zhou, N. Zheng, and W. Sun, Self-interlocked MXene/polyvinyl alcohol aerogel network to enhance interlaminar fracture toughness of carbon fibre/epoxy composites, Carbon 201, 60 (2023).

    Article  Google Scholar 

  18. Z. Zhou, and W. Sun, Mechanical behavior and failure mechanism of aerogel-reinforced carbon fibre/epoxy composites under quasi-static/impact loading, Polym. Testing 115, 107761 (2022).

    Article  Google Scholar 

  19. M. S. Sohn, and X. Z. Hu, Processing of carbon-fibre/epoxy composites with cost-effective interlaminar reinforcement, Compos. Sci. Tech. 58, 211 (1998).

    Article  Google Scholar 

  20. M. Yasaee, I. P. Bond, R. S. Trask, and E. S. Greenhalgh, Mode I interfacial toughening through discontinuous interleaves for damage suppression and control, Compos. Part A-Appl. Sci. Manuf. 43, 198 (2012).

    Article  Google Scholar 

  21. Z. Zhang, K. Fu, and Y. Li, Improved interlaminar fracture toughness of carbon fiber/epoxy composites with a multiscale cellulose fiber interlayer, Compos. Commun. 27, 100898 (2021).

    Article  Google Scholar 

  22. Z. Sun, S. Shi, X. Hu, X. Guo, J. Chen, and H. Chen, Short-aramid-fiber toughening of epoxy adhesive joint between carbon fiber composites and metal substrates with different surface morphology, Compos. Part B-Eng. 77, 38 (2015).

    Article  Google Scholar 

  23. Z. C. Mo, C. Y. Hu, J. C. Huo, and D. Ye, Interlayer-toughening carbon fiber/epoxy composites with short ramie fiber (in Chinese), Acta. Mater. Compos. Sin. Acc 34, 1237 (2017).

    Google Scholar 

  24. H. Zhou, X. Du, H. Y. Liu, H. Zhou, Y. Zhang, and Y. W. Mai, Delamination toughening of carbon fiber/epoxy laminates by hierarchical carbon nanotube-short carbon fiber interleaves, Compos. Sci. Tech. 140, 46 (2017).

    Article  Google Scholar 

  25. S. N. Yadav, V. Kumar, and S. K. Verma, Fracture toughness behaviour of carbon fibre epoxy composite with Kevlar reinforced interleave, Mater. Sci. Eng.-B 132, 108 (2006).

    Article  Google Scholar 

  26. Y. Li, D. Wang, and H. Ma, Improving interlaminar fracture toughness of flax fiber/epoxy composites with chopped flax yarn interleaving, Sci. China Tech. Sci. 58, 1745 (2015).

    Article  Google Scholar 

  27. Z. Wang, X. Zhong, L. Jiang, F. Qi, X. Ouyang, J. Wang, B. Liao, and J. Luo, Effect of interfacial delamination on coating crack in thick diamond-like carbon coatings under indentation, Acta Mech. Sin. 36, 524 (2020).

    Article  MathSciNet  Google Scholar 

  28. K. Park, and G. H. Paulino, Cohesive zone models: A critical review of traction-separation relationships across fracture surfaces, Appl. Mech. Rev. 64, 060802 (2011).

    Article  Google Scholar 

  29. M. Heidari-Rarani, M. M. Shokrieh, and P. P. Camanho, Finite element modeling of mode I delamination growth in laminated DCB specimens with R-curve effects, Compos. Part B-Eng. 45, 897 (2013).

    Article  Google Scholar 

  30. M. Ravandi, W. S. Teo, M. S. Yong, and T. E. Tay, Prediction of Mode I interlaminar fracture toughness of stitched flax fiber composites, J. Mater. Sci. 53, 4173 (2018).

    Article  Google Scholar 

  31. G. G. Trabal, B. L. V. Bak, B. Chen, S. M. Jensen, and E. Lindgaard, Delamination toughening of composite laminates using weakening or toughening interlaminar patches to initiate multiple delaminations: A numerical study, Eng. Fract. Mech. 273, 108730 (2022).

    Article  Google Scholar 

  32. V. Richefeu, A. Chrysochoos, V. Huon, Y. Monerie, R. Peyroux, and B. Wattrisse, Toward local identification of cohesive zone models using digital image correlation, Eur. J. Mech.-A Solids 34, 38 (2012).

    Article  Google Scholar 

  33. B. Huxford, W. Ronan, and B. P. Russell, Fibre bridging: Continuum modelling of extrinsic toughening in double cantilever beam tests, J. Compos. Mater. 56, 3307 (2022).

    Article  Google Scholar 

  34. A. Turon, C. G. Dávila, P. P. Camanho, and J. Costa, An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models, Eng. Fract. Mech. 74, 1665 (2007).

    Article  Google Scholar 

  35. Y. Niu, J. Wei, and C. Jiao, Multi-scale fiber bridging constitutive law based on meso-mechanics of ultra high-performance concrete under cyclic loading, Constr. Build. Mater. 354, 129065 (2022).

    Article  Google Scholar 

  36. T. Kanakubo, S. Echizen, J. Wang, and Y. Mu, Pullout behavior of bundled aramid fiber in fiber-reinforced cementitious composite, Materials 13, 1746 (2020).

    Article  Google Scholar 

  37. X. Zheng, J. Zhang, and Z. Wang, Effect of multiple matrix cracking on crack bridging of fiber reinforced engineered cementitious composite, J. Compos. Mater. 54, 3949 (2020).

    Article  Google Scholar 

  38. C. Ding, L. Guo, and B. Chen, An optimum polyvinyl alcohol fiber length for reinforced high ductility cementitious composites based on theoretical and experimental analyses, Constr. Build. Mater. 259, 119824 (2020).

    Article  Google Scholar 

  39. H. Zheng, Y. Li, and H. Y. Tu, Research on interlayer properties of short fiber intercalated carbon fiber/epoxy composites (in Chinese), Acta Mater. Compos. Sin. Acc 39, 3674 (2022).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12132011).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Benze Yu: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing–original draft. Yan Li: Conceptualization, Funding acquisition, Project administration, Resources, Supervision, Writing–review & editing. Haoyun Tu: Data curation, Software, Validation. Zhongsen Zhang: Validation, Visualization, Writing–review & editing.

Corresponding authors

Correspondence to Yan Li  (李岩) or Haoyun Tu  (涂昊昀).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendix

Table S1

Values of numerical parameters in trilinear CZM for comparison on the effect of cohesive stiffness and cohesive strength

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Li, Y., Tu, H. et al. Experimental and numerical investigation into interlaminar toughening effect of chopped fiber-interleaved flax fiber reinforced composites. Acta Mech. Sin. 40, 423287 (2024). https://doi.org/10.1007/s10409-023-23287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23287-x

Navigation