Skip to main content
Log in

An EBIS/T with integrated Penning trap

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

A special problem in atomic physics research with highly charged ions is to prepare ions with a unique charge state inside of EBIS or EBIT devices. On the other hand, there are great losses resulting from the transport of the ions from the source to an external trap. Therefore we are setting up an EBIS/T with internal Penning trap. This new set-up will be able to study electron–ion interaction with well-defined initial and final charge states, distinguishing between single step successive ionisation and multiple step ionisation of charge states similar to the crossed beams method but for much higher charge states. Another feature of this system is to determine with high precision the ion charge state distribution in the EBIS/T by application of Fourier Transform Ion Cyclotron Resonance (FT-ICR). This method allows the on-line monitoring of the ion distribution and the evolution of the charge state population together with its dependence on the degree of space charge compensation of the electron beam in the EBIS/T. It will be possible to study ion dynamics in compensated space charge potentials. In case of high homogeneity of the magnetic field in the trap region, experiments may be considered to measure directly binding energies of highly-charged ions and other topics of high resolution mass spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.L. Moore, D.L. Farnham, P.B. Schwinberg and R.S. Van Dyck Jr., Phys. Scripta 22 (1988) 294.

    Google Scholar 

  2. H.-J. Kluge and G. Bollen, Ion traps — recent applications and developments, Nucl. Instrum. Methods B 70 (1992) 473.

    ADS  Google Scholar 

  3. B. Visentin, P. Van Duppen, P.A. Leroy, F. Harrault and R. Gobin, Nucl. Instrum. Methods B 101 (1995) 275.

    ADS  Google Scholar 

  4. E. Beebe, L. Liljeby, A. Pikin, E.D. Donets, D. Habs, K. Janko, O. Tengblad and P. Van Duppen, Nucl. Instrum. Methods B 93 (1994) 378.

    ADS  Google Scholar 

  5. L. Assoufid and V.O. Kostroun, Nucl. Instrum. Methods B 69 (1992) 492.

    ADS  Google Scholar 

  6. R.S. Van Dyck Jr., Exp. Methods Phys. Sci. A 29 (1995) 363.

    Google Scholar 

  7. P. Beiersdorfer, S. Becker, B. Beck, S. Elliott, K. Widmann and L. Schweikhard, Nucl. Instrum. Methods B 98 (1995) 558.

    ADS  Google Scholar 

  8. A.G. Marshall and L. Schweikhard, Internat. J. Mass Spectrom. Ion Processes 118/119 (1992) 37.

    Article  Google Scholar 

  9. R. Becker and W.B. Herrmannsfeldt, Nucl. Instrum. Methods A 298 (1990) 22.

    ADS  Google Scholar 

  10. L. Schweikhard, J. Ziegler, P. Beiersdorfer, B. Beck, S. Becker and S. Elliott, Rev. Sci. Instrum. 66(1) (1995).

  11. M. Lindinger, S. Becker, G. Bollen, K. Dasgupta, R. Jertz, H.-J. Kluge, L. Schweikhard, M. Vogel and K. Lötzenkirschen, Z. Phys. D: At. Mol. Clust. 20 (1991) 441.

    Article  Google Scholar 

  12. G. Gabrielse and J. Tan, J. Appl. Phys. 63(10) (1988).

  13. R.M. Weisskoff, G.P. Lafyatis, K.R. Boyce, E.A. Cornell, R.W. Flanagan Jr. and D.E. Pritchard, J. Appl. Phys. 63(9) (1988).

  14. G. Audi and A.H. Wapstra, Nucl. Phys. A 565 (1993) 1.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zipfel, B., Becker, R., Kleinod, M. et al. An EBIS/T with integrated Penning trap. Hyperfine Interactions 115, 193–200 (1998). https://doi.org/10.1023/A:1012617226266

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012617226266

Keywords

Navigation