Skip to main content

Highly Charged Ions in Rare Earth Permanent Magnet Penning Traps

  • Chapter
New Trends in Atomic and Molecular Physics

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 76))

Abstract

A newly constructed apparatus at the United States National Institute of Standards and Technology (NIST) is designed for the isolation, manipulation, and study of highly charged ions. Highly charged ions are produced in the NIST electron-beam ion trap (EBIT), extracted through a beamline that selects a single mass/charge species, then captured in a compact Penning trap. The magnetic field of the trap is generated by cylindrical NdFeB permanent magnets integrated into its electrodes. In a room-temperature prototype trap with a single NdFeB magnet, species including Ne10+ and N7+ were confined with storage times of order 1 second, showing the potential of this setup for manipulation and spectroscopy of highly charged ions in a controlled environment. Ion capture has since been demonstrated with similar storage times in a more-elaborate Penning trap that integrates two coaxial NdFeB magnets for improved B-field homogeneity. Ongoing experiments utilize a second-generation apparatus that incorporates this two-magnet Penning trap along with a fast time-of-flight MCP detector capable of resolving the charge-state evolution of trapped ions. Holes in the two-magnet Penning trap ring electrode allow for optical and atomic beam access. Possible applications include spectroscopic studies of one-electron ions in Rydberg states, as well as highly charged ions of interest in atomic physics, metrology, astrophysics, and plasma diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Andjelkovic, S. Bharadia, B. Sommer, M. Vogel, W. Nörtershäuser, Towards high precision in-trap laser spectroscopy of highly charged ions. Hyperfine Interact. 196, 81–91 (2010). doi:10.1007/s10751-009-0155-x

    Article  ADS  Google Scholar 

  2. G.B. Andresen, M.D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P.D. Bowe, E. Butler, C.L. Cesar, M. Charlton, A. Deller, S. Eriksson, J. Fajans, T. Friesen, M.C. Fujiwara, D.R. Gill, A. Gutierrez, J.S. Hangst, W.N. Hardy, R.S. Hayano, M.E. Hayden, A.J. Humphries, R. Hydomako, S. Jonsell, S.L. Kemp, L. Kurchaninov, N. Madsen, S. Menary, P. Nolan, K. Olchanski, A. Olin, P. Pusa, C.O. Rasmussen, F. Robicheaux, E. Sarid, D.M. Silveira, C. So, J.W. Storey, R.I. Thompson, D.P. van der Werf, J.S. Wurtele, Y. Yamazaki, Confinement of antihydrogen for 1,000 seconds. Nat. Phys. 7, 558–564 (2011). doi:10.1038/nphys2025

    Article  Google Scholar 

  3. M.J. Biercuk, H. Uys, A.P. Vandevender, N. Shiga, W.M. Itano, J.J. Bollinger, High-fidelity quantum control using ion crystals in a Penning trap. Quantum Inf. Comput. 9(11), 920–949 (2009). http://dl.acm.org/citation.cfm?id=2012098.2012100

    MathSciNet  MATH  Google Scholar 

  4. L.S. Brown, G. Gabrielse, Geonium theory: Physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233–311 (1986). doi:10.1103/RevModPhys.58.233

    Article  ADS  Google Scholar 

  5. D.A. Church, D.P. Moehs, M.I. Bhatti, Precision and accuracy of lifetimes of metastable levels using the Kingdon trap technique. Int. J. Mass Spectrom. 192(1–3), 149–155 (1999). doi:10.1016/S1387-3806(99)00118-9

    Google Scholar 

  6. G. Gabrielse, X. Fei, K. Helmerson, S.L. Rolston, R. Tjoelker, T.A. Trainor, H. Kalinowsky, J. Haas, W. Kells, First capture of antiprotons in a penning trap: a kiloelectronvolt source. Phys. Rev. Lett. 57, 2504–2507 (1986). doi:10.1103/PhysRevLett.57.2504

    Article  ADS  Google Scholar 

  7. G. Gabrielse, P. Larochelle, D. Le Sage, B. Levitt, W.S. Kolthammer, R. McConnell, P. Richerme, J. Wrubel, A. Speck, M.C. George, D. Grzonka, W. Oelert, T. Sefzick, Z. Zhang, A. Carew, D. Comeau, E.A. Hessels, C.H. Storry, M. Weel, J. Walz, Antihydrogen production within a Penning-Ioffe trap. Phys. Rev. Lett. 100, 113001 (2008). doi:10.1103/PhysRevLett.100.113001

    Article  ADS  Google Scholar 

  8. J.D. Gillaspy, First results from the EBIT at NIST. Phys. Scr. T71, 99–103 (1997). http://stacks.iop.org/1402-4896/1997/i=T71/a=017

    Article  ADS  Google Scholar 

  9. V. Gomer, H. Strauss, D. Meschede, A compact Penning trap for light ions. Appl. Phys. B, Lasers Opt. 60, 89–94 (1995). doi:10.1007/BF01135848

    Article  ADS  Google Scholar 

  10. D. Hanneke, S. Fogwell, G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008). doi:10.1103/PhysRevLett.100.120801

    Article  ADS  Google Scholar 

  11. M. Hobein, A. Solders, M. Suhonen, Y. Liu, R. Schuch, Evaporative cooling and coherent axial oscillations of highly charged ions in a Penning trap. Phys. Rev. Lett. 106, 013002 (2011). doi:10.1103/PhysRevLett.106.013002

    Article  ADS  Google Scholar 

  12. U.D. Jentschura, P.J. Mohr, J.N. Tan, B.J. Wundt, Fundamental constants and tests of theory in Rydberg states of hydrogenlike ions. Phys. Rev. Lett. 100, 160404 (2008). doi:10.1103/PhysRevLett.100.160404

    Article  ADS  Google Scholar 

  13. U.D. Jentschura, P.J. Mohr, J.N. Tan, Fundamental constants and tests of theory in Rydberg states of one-electron ions. J. Phys. B, At. Mol. Opt. Phys. 43(7), 074002 (2010). http://stacks.iop.org/0953-4075/43/i=7/a=074002

    Article  ADS  Google Scholar 

  14. H.-J. Kluge, K. Blaum, F. Herfurth, W. Quint, Atomic and nuclear physics with stored particles in ion traps. Phys. Scr. T104, 167–177 (2003). http://stacks.iop.org/1402-4896/2003/i=T104/a=034

    Article  ADS  Google Scholar 

  15. A. Lapierre, J.R. Crespo López-Urrutia, J. Braun, G. Brenner, H. Bruhns, D. Fischer, A.J. González Martínez, V. Mironov, C. Osborne, G. Sikler, R. Soria Orts, H. Tawara, J. Ullrich, V.M. Shabaev, I.I. Tupitsyn, A. Volotka, Lifetime measurement of the Ar XIV \(1{s}^{2}2{s}^{2}2p^{2}P_{3/2}^{o}\) metastable level at the Heidelberg electron-beam ion trap. Phys. Rev. A 73, 052507 (2006). doi:10.1103/PhysRevA.73.052507

    Article  ADS  Google Scholar 

  16. M.A. Levine, R.E. Marrs, J.R. Henderson, D.A. Knapp, M.B. Schneider, The electron beam ion trap: A new instrument for atomic physics measurements. Phys. Scr. 1988(T22), 157 (1988). http://stacks.iop.org/1402-4896/1988/i=T22/a=024

    Article  Google Scholar 

  17. P.J. Mohr, Defining units in the quantum based SI. Metrologia 45(2), 129–133 (2008). http://stacks.iop.org/0026-1394/45/i=2/a=001

    Article  MathSciNet  ADS  Google Scholar 

  18. P.J. Mohr, The quantum SI: a possible new international system of units, in Current Trends in Atomic Physics, ed. by S. Salomonson, E. Lindroth. Advances in Quantum Chemistry, vol. 53 (Academic Press, San Diego, 2008), pp. 27–36. doi:10.1016/S0065-3276(07)53003-0. Chapter 3

    Chapter  Google Scholar 

  19. K. Motohashi, A. Moriya, H. Yamada, S. Tsurubuchi, Compact electron-beam ion trap using NdFeB permanent magnets. Rev. Sci. Instrum. 71(2), 890–892 (2000). doi:10.1063/1.1150323

    Article  ADS  Google Scholar 

  20. F. Nez, A. Antognini, F.D. Amaro, F. Biraben, J.M.R. Cardoso, D. Covita, A. Dax, S. Dhawan, L. Fernandes, A. Giesen, T. Graf, T.W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P.E. Knowles, E. Le Bigot, Y.-W. Liu, J.A.M. Lopes, L. Ludhova, C.M.B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J.M.F. Dos Santos, L. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J.F.C.A. Veloso, F. Kottmann, R. Pohl, Is the proton radius a player in the redefinition of the International System of Units? Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 369(1953), 4064–4077 (2011). doi:10.1098/rsta.2011.0233

    Article  ADS  Google Scholar 

  21. V.P. Ovsyannikov, G. Zschornack, First investigations of a warm electron beam ion trap for the production of highly charged ions. Rev. Sci. Instrum. 70(6), 2646–2651 (1999). doi:10.1063/1.1149822

    Article  ADS  Google Scholar 

  22. R. Pohl, A. Antognini, F. Nez, F.D. Amaro, F. Biraben, J.M.R. Cardoso, D.S. Covita, A. Dax, S. Dhawan, L.M.P. Fernandes, A. Giesen, T. Graf, T.W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O.L. Bigot, Y.-W. Liu, J.A.M. Lopes, L. Ludhova, C.M.B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J.M.F. dos Santos, L.A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J.F.C.A. Veloso, F. Kottmann, The size of the proton. Nature 466(7303), 213–218 (2010). doi:10.1038/nature09250

    Article  ADS  Google Scholar 

  23. L.P. Ratliff, E.W. Bell, D.C. Parks, A.I. Pikin, J.D. Gillaspy, Continuous highly charged ion beams from the National Institute of Standards and Technology electron-beam ion trap. Rev. Sci. Instrum. 68, 1998 (1997). doi:10.1063/1.1148087

    Article  ADS  Google Scholar 

  24. J. Repp, C. Böhm, J. Crespo López-Urrutia, A. Dörr, S. Eliseev, S. George, M. Goncharov, Y. Novikov, C. Roux, S. Sturm, S. Ulmer, K. Blaum, PENTATRAP: a novel cryogenic multi-Penning-trap experiment for high-precision mass measurements on highly charged ions. Appl. Phys. B, Lasers Opt. 107(4), 983–996 (2012). doi:10.1007/s00340-011-4823-6

    Article  ADS  Google Scholar 

  25. D. Schneider, D.A. Church, G. Weinberg, J. Steiger, B. Beck, J. McDonald, E. Magee, D. Knapp, Confinement in a cryogenic Penning trap of highest charge state ions from EBIT. Rev. Sci. Instrum. 65(11), 3472–3478 (1994). doi:10.1063/1.1144525

    Article  ADS  Google Scholar 

  26. F.G. Serpa, J.D. Gillaspy, E. Träbert, Lifetime measurements in the ground configuration of Ar13+ and Kr22+ using an electron beam ion trap. J. Phys. B, At. Mol. Opt. Phys. 31(15), 3345 (1998). http://stacks.iop.org/0953-4075/31/i=15/a=008

    Article  ADS  Google Scholar 

  27. V. Simon, P. Delheij, J. Dilling, Z. Ke, W. Shi, G. Gwinner, Cooling of short-lived, radioactive, highly charged ions with the TITAN cooler Penning trap. Hyperfine Interact. 199, 151–159 (2011). doi10.1007/s10751-011-0309-5

    Article  ADS  Google Scholar 

  28. C.H. Storry, A. Speck, D.L. Sage, N. Guise, G. Gabrielse, D. Grzonka, W. Oelert, G. Schepers, T. Sefzick, H. Pittner, M. Herrmann, J. Walz, T.W. Hänsch, D. Comeau, E.A. Hessels, First laser-controlled antihydrogen production. Phys. Rev. Lett. 93, 263401 (2004). doi:10.1103/PhysRevLett.93.263401

    Article  ADS  Google Scholar 

  29. L. Suess, C.D. Finch, R. Parthasarathy, S.B. Hill, F.B. Dunning, Permanent magnet Penning trap for heavy ion storage. Rev. Sci. Instrum. 73(8), 2861–2866 (2002). doi:10.1063/1.1490411

    Article  ADS  Google Scholar 

  30. J.N. Tan, S.M. Brewer, N.D. Guise, Experimental efforts at NIST towards one-electron ions in circular Rydberg states. Phys. Scr. 2011(T144), 014009 (2011). http://stacks.iop.org/1402-4896/2011/i=T144/a=014009

    Article  Google Scholar 

  31. J.N. Tan, S.M. Brewer, N.D. Guise, Penning traps with unitary architecture for storage of highly charged ions. Rev. Sci. Instrum. 83(2), 023103 (2012). doi:10.1063/1.3685246

    Article  ADS  Google Scholar 

  32. E. Träbert, Atomic lifetime measurements employing an electron beam ion trap. Can. J. Phys. 86(1), 73–97 (2008). doi:10.1139/p07-099

    Article  ADS  Google Scholar 

  33. J. Xiao, Z. Fei, Y. Yang, X. Jin, D. Lu, Y. Shen, L. Liljeby, R. Hutton, Y. Zou, A very low energy compact electron beam ion trap for spectroscopic research in Shanghai. Rev. Sci. Instrum. 83(1), 013303 (2012). doi:10.1063/1.3675575

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was performed while one author (NDG) held a National Research Council Research Associateship Award at NIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Guise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guise, N.D., Brewer, S.M., Tan, J.N. (2013). Highly Charged Ions in Rare Earth Permanent Magnet Penning Traps. In: Mohan, M. (eds) New Trends in Atomic and Molecular Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38167-6_3

Download citation

Publish with us

Policies and ethics