Skip to main content
Log in

Modeling the Oscillations of the CO + O2 Reaction Rate in a Granular Catalyst Layer

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

Abstract

A new point model is proposed for the oxidation reaction of CO on the surface of a Pd cluster. The model reflects the oxidation–reduction mechanism on the palladium surface and incorporates all the stages of the kinetic scheme from the previous three-component model. A new assumption based on a series of experimental facts claims that the adsorbed oxygen atoms may diffuse into deeper-lying layers of the crystal lattice and thus influence the processes in the adsorption layer due to the micro size of the palladium clusters. The new point system has been built into the distributed general model for a granular catalyst developed previously. As a result, for parameter values corresponding to experimental conditions we have managed for the first time to obtain a wide region of chaos and complex mixed modes, close to those observed in real experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. I. Jaeger, K. Moller, and P. J. Plath, J. Chem. Soc. Faraday Trans., 82,Pt II, 3315–3330 (1986).

    Google Scholar 

  2. M. M. Slinko, N. I. Jaeger, and P. Svensson, J. Catal., 118, 349–359 (1989).

    Google Scholar 

  3. M. Liauw, P. J. Plath, and N. I. Jaeger, J. Chem. Phys., 104(16), 6375–6486 (1996).

    Google Scholar 

  4. E. S. Kurkina, N. V. Peskov, M. M. Slin'ko, and M. G. Slin'ko, Doklady RAN, 351, No. 4, 497–501 (1996).

    Google Scholar 

  5. M. M. Slinko, E. S. Kurkina, M. A. Liauw, and N. I. Jaeger, J. Chem. Phys., 111(17), 8105–8114 (1999).

    Google Scholar 

  6. E. S. Kurkina and E. D. Tolstunova, in: Applied Mathematics and Informatics [in Russian], No. 5, Izd. MGU, Moscow (2000), pp. 23–47.

    Google Scholar 

  7. G. K. Boreskov, Heterogeneous Catalysis [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  8. G. K. Boreskov, M. G. Slin'ko, and V. S. Chesalova, Zh. Fiz. Khim., 30, 2787 (1956).

    Google Scholar 

  9. V. P. Zhdanov and B. Kasemo, Surf. Sci. Rep., 39, 25–104 (2000).

    Google Scholar 

  10. V. Johanek, I. Stara, N. Tsud, K. Veltruska, and V. Matolin, Appl. Surf. Sci., 162–163, 679–684 (2000).

    Google Scholar 

  11. L. Piccolo and C. Henry, Appl. Surf. Sci., 162–163, 670–678 (2000).

    Google Scholar 

  12. L. Piccolo, C. Becker, and C. Henry, Appl. Surf. Sci., 164, 156–162 (2000).

    Google Scholar 

  13. F. P. Leisenberger, G. Koller, M. Sock, S. Surnev, M. G. Ramsey, F. P. Netzer, B. Klotzer, and K. Hayek, Surf. Sci., 445, 380–393 (2000).

    Google Scholar 

  14. H. Conrad, G. Ertl, J. Kuppers, and E. E. Latta, Surf. Sci., 65, 245 (1977).

    Google Scholar 

  15. D. L. Weissman, M. L. Shek, W. E. Spicer, Surf. Sci., 92, 159 (1980).

    Google Scholar 

  16. D. L. Weissman-Wenocur, M. L. Shek, P. M. Stefan, I. Lindau, and W. E. Spicer, Surf. Sci., 127, 513 (1983).

    Google Scholar 

  17. L. Surnev, G. Bliznakov, and M. Kiskinova, Surf. Sci., 140, 249 (1989).

    Google Scholar 

  18. B. A. Banse and B. E. Koel, Surf. Sci., 232, 275 (1990).

    Google Scholar 

  19. G. Veser, A. Wright, and R. Carella, Catalyst Letters, 58, 199–206 (1999).

    Google Scholar 

  20. G. Zheng and E. I. Altman, S urf. Sci., 462, 151–168 (2000).

    Google Scholar 

  21. V. A. Bondzie, P. Kleban, and D. J. Dwyer, Surf. Sci., 247, 319 (1996).

    Google Scholar 

  22. P. Legare, L. Hilaire, G. Maire, G. Krill, and A. Amamou, Surf. Sci., 107, 533 (1981).

    Google Scholar 

  23. J.-W. He and P. R. Norton, Surf. Sci., 204, 26 (1988).

    Google Scholar 

  24. S. D. Bader, L. Richter, and T. W. Orent, Surf. Sci., 115, 501 (1982).

    Google Scholar 

  25. T. W. Orent and S. D. Bader, Surf. Sci., 115, 323 (1982).

    Google Scholar 

  26. M. R. Bassett and R. Imbihl, J. Chem. Phys., 93, 811 (1990).

    Google Scholar 

  27. B. C. Sales, J. E. Turner, and M. B. Maple, Surf. Sci., 114, 381–394 (1982).

    Google Scholar 

  28. N. Hartmann, K, Krischer, and R. Imbihl, J. Chem. Phys., 101, No. 8, 6717–6727 (1994).

    Google Scholar 

  29. U. Burghaus, I. Z. Jones, and M. Bowker, Surf. Sci., 454–456, 326–330 (2000).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurkina, E.S., Tolstunova, E.D. Modeling the Oscillations of the CO + O2 Reaction Rate in a Granular Catalyst Layer. Computational Mathematics and Modeling 12, 252–261 (2001). https://doi.org/10.1023/A:1012597407286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012597407286

Keywords

Navigation