Skip to main content
Log in

Autonomous Replication of a Bombyx moriTransgene Fragment in the Yeast Saccharomyces cerevisiae

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

A previously cloned autonomous transgene (pr8a) of silkworm Bombyx moriinherited without changes in the structure was used to clarify the activity of its ARS in yeast cells. ARS of pr8a was also shown to maintain autonomous replication of hybrid plasmids in yeast cells. The same was true for its central 2.4-kb fragment devoid of flanking sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Benbow, R.M., Zhao, J., and Larson, D.D., On the Nature of Origins of DNA Replication in Eukaryotes, BioEssays, 1992, vol. 14, pp. 661-670.

    Google Scholar 

  2. Coverley, D. and Laskey, R.A., Regulation of Eukaryotic DNA Replication, Annu. Rev. Biochem., 1994, vol. 63, pp. 745-776.

    Google Scholar 

  3. DePamphilis, M.L., Initiation of DNA Replication in Eukaryotic Chromosomes, J. Cell Biochem., 1998, suppl., nos. 30-31, pp. 8-17.

  4. DePamphilis, M.L., Replication Origins in Metazoan Chromosomes: Fact or Fiction, BioEssays, 1999, vol. 21, pp. 5-16.

    Google Scholar 

  5. Sudo, K., Ogata, M., Sato, Y., et al., Cloned Origin of DNA Replication in c-myc Gene Can Function and Be Transmitted in Transgenic Mice in an Episomal State, Nucleic Acids Res., 1990, vol. 18, pp. 5425-5432.

    Google Scholar 

  6. Umec, R.M., Linskens, M.H., Kowalski, D., and Huberman, J.A., New Beginning in Studies of Eukaryotic DNA Replication Origins, Biochim. Biophys. Acta, 1989, vol. 100, pp. 1-14.

    Google Scholar 

  7. Bell, S.P., Kobayashi, R., and Stillman, B., Yeast Origin Recognition Complex Functions in Transcription Silencing and DNA Replication, Science, 1993, vol. 262, pp. 1844-1849.

    Google Scholar 

  8. Marahrens, Y. and Stillman, B., A Yeast Chromosomal Origin of DNA Replication Defined by Multiple Functional Elements, Science, 1992, vol. 255, pp. 817-823.

    Google Scholar 

  9. Newlon, C.S., Yeast Chromosome Replication and Segregation, Microbiol. Rev., 1988, vol. 52, pp. 568-601.

    Google Scholar 

  10. Rowley, A., Cocker, J.H., Harwood, J., and Diffley, F.X., Initiation Complex Assembly at Budding Yeast Replication Origins Begins with the Recognition of a Biparticle Sequence, EMBO J., 1995, vol. 14, pp. 2631-2641.

    Google Scholar 

  11. Wang, S., Dijkwel, P.A., and Hamlin, J.L., Lagging-Strand, Early-Labeling, and Two-Dimensional Gel Assays Suggest Multiple Potential Initiation Sites in the Chinese Hamster Dihydrofolate Reductase Origin, Mol. Cell. Biol., 1998, vol. 18, pp. 39-51.

    Google Scholar 

  12. Kobayashi, T., Rein, T., and DePamphilis, M.L., Identification of Primary Initiation Sites for DNA Replication in the Hamster Dihydrofolate Reductase Gene Initiation Zone, Mol. Cell. Biol., 1998, vol. 18, pp. 3266-3277.

    Google Scholar 

  13. Leffak, M. and James, C.D., Opposite Replication Polarity of the Germ Line c-myc Gene in HeLa Cells Compared with That of Two Berkitt Lymphoma Cell Lines, Mol. Cell. Biol., 1989, vol. 9, pp. 586-593.

    Google Scholar 

  14. McWhinney, C. and Leffak, M., Autonomous Replication of a DNA Fragment Containing the Chromosomal Replication Origin of the Human c-myc Gene, Nucleic Acids Res., 1990, vol. 18, pp. 1233-1242.

    Google Scholar 

  15. Vassiliev, L.T. and Johnson, E.M., An Initiation Zone of Chromosomal DNA Replication Located Upstream of the c-myc Gene in Proliferating Mammalian Cells, Mol. Cell. Biol., 1990, vol. 10, pp. 4899-4904.

    Google Scholar 

  16. Kitsberg, D., Selig, S., Keshet, I., and Cedar, H., Replication Structure of the Human β-Globin Gene Domain, Nature, 1993, vol. 366, pp. 588-590.

    Google Scholar 

  17. Aladjem, M.I., Groudine, M., Brody, L.L., et al., Participation of the Human β-Globin Locus Control Region in Initiation of DNA Replication, Science, 1995, vol. 270, pp. 815-819.

    Google Scholar 

  18. Zhao, Y., Miyagi, S., Kikawada, T., and Tsutsumi, K., Sequence Requirement for Replication Initiation at the Rat Aldolase B Locus Implicated in Its Functional Correlation with Transcriptional Regulation, Biochem. Biophys. Res. Commun., 1997, vol. 237, pp. 707-713.

    Google Scholar 

  19. Spradling, A.C., ORC Binding, Gene Amplification, and the Nature of Metazoan Replication Origins, Genes Dev., 1999, vol. 13, pp. 2619-2623.

    Google Scholar 

  20. Gilbert, D.M., Replication Origins in Yeast versus Metazoa: Separation of the Haves and the Have Nots, Curr. Opin. Genet., 1998, vol. 8, pp. 194-199.

    Google Scholar 

  21. Hayashi, C., Fujino, F., Ogata, M., et al., Determination of the Functional Domain of a Mouse Autonomous Replicating Sequence, Biol. Pharm. Bull., 1997, vol. 20, pp. 690-693.

    Google Scholar 

  22. Nikolaev, A.I., Chkoniya, T.T., Semenova, N.A., et al., Microinjection of Recombinant DNA in Early Embryos of Silkworm Bombyx mori, Mol. Biol. (Moscow), 1989, vol. 23, pp. 1177-1187.

    Google Scholar 

  23. Nikolaev, A.I., Chkoniya, T.T., and Kafiani-Eristavi, K.A., Extrachromosomal Location and Transmission of a Recombinant Plasmid Microinjected in Silkworm Eggs, Mol. Biol. (Moscow), 1991, vol. 25, no. 4, pp. 1136-1146.

    Google Scholar 

  24. Chkoniya, T.T., Nikolaev, A.I., and Kafiani-Eristavi, K.A., Restriction Enzyme Analysis of Autonomously Replicating Molecules That Contain Exogenous DNA in a Transgenic Silkworm Line, Mol. Biol. (Moscow), 1991, vol. 25, pp. 1427-1436.

    Google Scholar 

  25. Nikolaev, A.I., Tchkonia, T.T., Kafiani-Eristavi, C.A., and Tarantul, V.Z., Preferential Extrachromosomal Localization of Exogenous DNA in Transgenic Silkworm Bombyx mori L., Mol. Gen. Genet., 1993, vol. 236, pp. 326-330.

    Google Scholar 

  26. Nikolaev, A.I., Kalmyrzaev, B.B., Andreeva, L.E., et al., Characterization of DNA Sequences Autonomously Replicating in Transgenic Insects and Mice, Mol. Biol. (Moscow), 1998, vol. 32, pp. 427-433.

    Google Scholar 

  27. Ariga, H., Tsuchihashi, Z., Naruto, M., and Yamada, M., Cloned Mouse DNA Fragment Can Replicate in a Simian Virus 40 T Antigen-Dependent System In Vivo and In Vitro, Mol. Cell. Biol., 1985, vol. 5, pp. 563-568.

    Google Scholar 

  28. Larionov, V., Kouprina, N., Graves, J., et al., Specific Cloning of Human DNA as Yeast Artificial Chromosomes by Transformation-Associated Recombination, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 491-496.

    Google Scholar 

  29. Burke, D.T., Carle, G.F., and Olson, M.V., Cloning of Large DNA Segments of Exogenous DNA into Yeast by Means of Artificial Chromosome Vectors, Science, 1987, vol. 236, pp. 809-816.

    Google Scholar 

  30. Ito, H., Fukund, Y., Murata, K., and Kumura, A., Transformation of Intact Yeast Cells Treated with Alkali Cations, J. Bacteriol., 1983, vol. 153, pp. 163-168.

    Google Scholar 

  31. Sherman, F., Fink, G.R., and Hicks, J.B., Laboratory Course Manual for Methods in Yeast Genetics, Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1986.

    Google Scholar 

  32. Sanger, F., Nicklen, S., and Coulson, A.R., DNA Sequencing with Chain-Terminating Inhibitors, Proc. Natl. Acad. Sci. USA, 1977, vol. 74, pp. 5463-5467.

    Google Scholar 

  33. Struhl, K., Stinchcomb, D.T., Scherrer, S., and Davis, R.W., High-Frequency Transformation of Yeast: Autonomous Replication of Hybrid DNA Molecules, Proc. Natl. Acad. Sci. USA, 1979, vol. 76, pp. 1035-1039.

    Google Scholar 

  34. Trivedi, A., Waltz, S.E., Kamath, S., and Leffak, M., Multiple Initiations in the c-myc Replication Origin Independent of Chromosomal Location, DNA Cell Biol., 1998, vol. 17, pp. 885-896.

    Google Scholar 

  35. Waltz, S.E., Trivedy, A.A., and Leffak, M., DNA Replication Initiates Non-Randomly at Multiple Sites Near the c-myc Gene in HeLa Cells, Nucleic Acids Res., 1996, vol. 24, pp. 1887-1894.

    Google Scholar 

  36. Gassman, M., Donoho, G., and Berg, P., Maintenance of an Extrachromosomal Plasmid Vector in Mouse Embryonic Stem Cells, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 1292-1296.

    Google Scholar 

  37. Mazur, S., Feunteun, J., and De La Roch-Saint-Andre, C., Episomal Amplification and Chromosomal Integration of the Viral Genome: Alternative Pathways in Hamster Polyomavirus-Induced Lymphomas, J. Virol., 1995, vol. 69, pp. 3059-3066.

    Google Scholar 

  38. Ten Hagen, K.G., Ravnan, J.B., and Cohen, S.N., Disparate Replication Properties of Integrated and Extrachromosomal Forms of Bovine Papilloma Virus in ID13 Cells, J. Mol. Biol., 1995, vol. 254, pp. 119-129.

    Google Scholar 

  39. Piirsoo, M., Ustav, E., Mandel, T., et al., Cis and Trans Requirements for Stable Episomal Maintenance of the BPV-1 Replicator, EMBO J., 1996, vol. 15, pp. 1-11.

    Google Scholar 

  40. Calos, M.P., The Potential of Extrachromosomal Replicating Vectors for Gene Therapy, Trends Genet., 1996, vol. 12, pp. 463-466.

    Google Scholar 

  41. Nikolaev, A.I., Kafiani-Eristavi, K.A., and Tarantul, V.Z., Formation of an Autonomously Replicating Shuttle Plasmid as a Result of Nonhomologous Replication In Vivo, Mol. Biol. (Moscow), 1993, vol. 27, no. 4, pp. 856-860.

    Google Scholar 

  42. Nikolaev, A.I., Chkoniya, T.T., Kafiani-Eristavi, K.A., and Tarantul, V.Z., Analysis of a Rescued Plasmid from Transgenic Silkworm, Biopolimery Kletka, 1992, vol. 6, pp. 29-32.

    Google Scholar 

  43. Arman, I.P. and Legchilina, S.P., Mitotic Stability Level and Its Modification in Transformed Yeast S. cerevisiae, Dokl. Akad. Nauk SSSR, 1982, vol. 267, pp. 749-752.

    Google Scholar 

  44. Zakan, V.A. and Kupfer, D.M., Replication and Segregation of an Unstable Plasmid in Yeast, Plasmid, 1982, vol. 8, pp. 15-28.

    Google Scholar 

  45. Clarke, L. and Carbon, J., Isolation of Yeast Centromere and Construction of Functional Small Circular Chromosome, Nature, 1980, vol. 287, pp. 504-509.

    Google Scholar 

  46. Kouprina, N.Y. and Larionov, V.L., The Study of an rDNA Replicator in Saccharomyces, Curr. Genet., 1983, vol. 7, pp. 433-438.

    Google Scholar 

  47. Laurenson, P. and Rine, J., Silencers, Silencing, and Heritable Transcriptional States, Microbiol. Rev., 1992, vol. 56, pp. 543-560.

    Google Scholar 

  48. Murrey, A.W. and Szostak, J.W., Pedigree Analysis of Plasmid Segregation in Yeast, Cell (Cambridge, Mass.), 1983, vol. 3, pp. 961-970.

    Google Scholar 

  49. Dijkwel, P.A. and Hamlin, J.L., Origins of Replication and the Nuclear Matrix: The DHFR Domain as a Paradigm, Int. Rev. Cytol., 1995, vol. 162, pp. 455-484.

    Google Scholar 

  50. Dobbs, D.L., Shaiu, W.L., and Benrow, R.M., Modular Sequence Elements Associated with Origin Regions in Eukaryotic Chromosomal DNA, Nucleic Acids Res., 1994, vol. 22, pp. 2479-2489.

    Google Scholar 

  51. McArthur, J.G., Beitel, L.K., Chamberlain, J.W., and Stanners, C.P., Elements Which Stimulate Gene Amplification in Mammalian Cells: Role of Recombinogenic Sequences/Structures and Transcriptional Activation, Nucleic Acids Res., 1991, vol. 19, pp. 2477-2484.

    Google Scholar 

  52. O'Neil, E.A., Fletcher, C., Burrow, C.R., et al., Transcriptional Factor OTF1 Is Functionally Identical to the DNA Replication Factor NFIII, Science, 1988, vol. 241, pp. 1210-1213.

    Google Scholar 

  53. Dunyak, V.V. and Timchenko, N.A., A DARK146 DNA Fragment in a Complex Form of DNA Polymerase αContains Several Binding Sites for Nuclear Proteins, Mol. Biol. (Moscow), 1994, vol. 28, pp. 822-831.

    Google Scholar 

  54. Hartwell, L.H., Saccharomyces cerevisiae Cell Cycle, Bacteriol. Rev., 1974, vol. 38, pp. 164-198.

    Google Scholar 

  55. Elledge, S.J., Cell Cycle Checkpoints: Preventing an Identity Crisis, Science, 1996, vol. 274, pp. 1664-1672.

    Google Scholar 

  56. Devin, A.B., Koltovaya, N.A., Gavrilov, B.V., and Arman, I.P., Generation and Characterization of the New Srm Nuclear Gene Mutations That Induce Coordinated Changes in Maintenance of Nuclear and Mitochondrial Genetic Structures in Yeast Saccharomycetes, Genetika (Moscow), 1994, vol. 30, no. 9, pp. 1194-1201.

    Google Scholar 

  57. Verna, J., Lodder, A., and Lee, K., A Family of Genes Required for Maintenance of Cell Wall Integrity and for the Stress Response in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 13 804-13 809.

    Google Scholar 

  58. Packeiser, A.N., Urakov, V.N., Polyakova, Y.A., et al., A Novel Vacuolar Protein Encoded by SSU21/MCD4 Is Involved in Cell Wall Integrity in Yeast, Yeast, 1999, vol. 15, pp. 1485-1501.

    Google Scholar 

  59. Gimeno, C.J., Ljungdahl, P.O., Styles, C.A., and Fink, G.R., Unipolar Cell Divisions in the Yeast S. cerevisiae Lead to Filamentous Growth: Regulation by Starvation and RAS, Cell (Cambridge, Mass.), 1992, vol. 68, pp. 1077-1090.

    Google Scholar 

  60. Mevel-Nino, M., Lutfalla, G., and Bertolotti, R., A Polyoma-Derived Plasmid Vector Maintained Episomally in Both E. coli and Mouse Hepatoma Cells, Exp. Cell Res., 1986, vol. 166, pp. 63-76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legchilina, S.P., Efimenko, I.G., Aniskina, Y.V. et al. Autonomous Replication of a Bombyx moriTransgene Fragment in the Yeast Saccharomyces cerevisiae. Russian Journal of Genetics 37, 1257–1265 (2001). https://doi.org/10.1023/A:1012500923993

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012500923993

Keywords

Navigation