Skip to main content

Efficient Homologous Recombination-Mediated in Planta Gene Targeting by Egg-Cell-Specific Expression of Staphylococcus aureus Cas9 from Arabidopsis

  • Protocol
  • First Online:
CRISPR-Cas Methods

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 1463 Accesses

Abstract

Site-specific genome engineering approaches were greatly facilitated by the recent emergence of the CRISPR-Cas system, enabling precise induction of DNA double-strand breaks. However, up to now its application was mostly restricted to nonhomologous end-joining-mediated targeted mutagenesis. In contrast, precise genome modifications using a suitable donor sequence for homologous still pose a particular challenge in plants, as NHEJ is the dominant repair mechanism for DSBs in somatic cells. To achieve efficient HR-mediated genome modifications in plants, we recently developed the in planta gene targeting (ipGT) system, which works via the induction of DSBs by Cas9 to activate the target and the targeting vector at the same time, making it independent of high transformation efficiencies. Here, we describe an updated protocol of ipGT for the model plant Arabidopsis, taking into account our recent improvements based on egg-cell-specific expression of Staphylococcus aureus Cas9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CRISPR-Cas:

Clustered regularly interspaced short palindromic repeats-CRISPR associated

DSB:

Double-strand break

GT:

Gene targeting

ipGT:

In planta GT

NHEJ:

Nonhomologous end joining

PPT:

Phosphinothricin

References

  1. Puchta H, Dujon B, Hohn B (1996) Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci U S A 93:5055–5060. https://doi.org/10.1073/pnas.93.10.5055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56:1–14. https://doi.org/10.1093/jxb/eri025

    Article  CAS  PubMed  Google Scholar 

  3. Huang T-K, Puchta H (2019) CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recombination. Plant Cell Rep 38:443–453. https://doi.org/10.1007/s00299-019-02379-0

    Article  CAS  PubMed  Google Scholar 

  4. Puchta H, Fauser F (2013) Gene targeting in plants: 25 years later. Int J Dev Biol 57:629–637. https://doi.org/10.1387/ijdb.130194hp

    Article  CAS  PubMed  Google Scholar 

  5. Kumlehn J, Pietralla J, Hensel G, Pacher M, Puchta H (2018) The CRISPR/Cas revolution continues: from efficient gene editing for crop breeding to plant synthetic biology. J Integr Plant Biol 60:1127–1153. https://doi.org/10.1111/jipb.12734

    Article  CAS  PubMed  Google Scholar 

  6. Scheben A, Wolter F, Batley J, Puchta H, Edwards D (2017) Towards CRISPR/Cas crops - bringing together genomics and genome editing. New Phytol 216:682–698. https://doi.org/10.1111/nph.14702

    Article  CAS  PubMed  Google Scholar 

  7. Fauser F, Roth N, Pacher M, Ilg G, Sanchez-Fernandez R, Biesgen C, Puchta H (2012) In planta gene targeting. Proc Natl Acad Sci U S A 109:7535–7540. https://doi.org/10.1073/pnas.1202191109

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80:1139–1150. https://doi.org/10.1111/tpj.12704

    Article  CAS  PubMed  Google Scholar 

  9. Steinert J, Schiml S, Fauser F, Puchta H (2015) Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J 84:1295–1305. https://doi.org/10.1111/tpj.13078

    Article  CAS  PubMed  Google Scholar 

  10. Mao Y, Zhang Z, Feng Z, Wei P, Zhang H, Botella JR, Zhu J-K (2015) Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol J 14:519–532. https://doi.org/10.1111/pbi.12468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Z-P, Xing H-L, Dong L, Zhang H-Y, Han C-Y, Wang X-C, Chen Q-J (2015) Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol 16:144. https://doi.org/10.1186/s13059-015-0715-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yan L, Wei S, Wu Y, Hu R, Li H, Yang W, Xie Q (2015) High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol Plant 8:1820–1823. https://doi.org/10.1016/j.molp.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  13. Wolter F, Klemm J, Puchta H (2018) Efficient in planta gene targeting in Arabidopsis using egg cell-specific expression of the Cas9 nuclease of Staphylococcus aureus. Plant J 94:735–746. https://doi.org/10.1111/tpj.13893

    Article  CAS  PubMed  Google Scholar 

  14. Miki D, Zhang W, Zeng W, Feng Z, Zhu J-K (2018) CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat Commun 9:1967. https://doi.org/10.1038/s41467-018-04416-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wolter F, Puchta H (2019) In planta gene targeting can be enhanced by the use of CRISPR /Cas12a. Plant J 100:1083–1094. https://doi.org/10.1111/tpj.14488.16

    Article  CAS  PubMed  Google Scholar 

  16. Bernard P, Couturier M (1992) Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J Mol Biol 226:735–745. https://doi.org/10.1016/0022-2836(92)90629-X

    Article  CAS  PubMed  Google Scholar 

  17. Koncz C, Kreuzaler F, Kalman Z, Schell J (1984) A simple method to transfer, integrate and study expression of foreign genes, such as chicken ovalbumin and alpha-actin in plant tumors. EMBO J 3:1029–1037. https://doi.org/10.1002/j.1460-2075.1984.tb01923.x

  18. Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x

    Article  CAS  PubMed  Google Scholar 

  19. Brinkman EK, Chen T, Amendola M, van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42:e168. https://doi.org/10.1093/nar/gku936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zischewski J, Fischer R, Bortesi L (2017) Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv 35:95–104. https://doi.org/10.1016/j.biotechadv.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  21. Cui Y, Xu J, Cheng M, Liao X, Peng S (2018) Review of CRISPR/Cas9 sgRNA design tools. Interdiscip Sci 10:455–465. https://doi.org/10.1007/s12539-018-0298-z

    Article  CAS  PubMed  Google Scholar 

  22. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191. https://doi.org/10.1038/nature14299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Medrano RFV, de Oliveira CA (2014) Guidelines for the tetra-primer ARMS-PCR technique development. Mol Biotechnol 56:599–608. https://doi.org/10.1007/s12033-014-9734-4

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Puchta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wolter, F., Huang, TK., Puchta, H. (2020). Efficient Homologous Recombination-Mediated in Planta Gene Targeting by Egg-Cell-Specific Expression of Staphylococcus aureus Cas9 from Arabidopsis. In: Islam, M.T., Bhowmik, P.K., Molla, K.A. (eds) CRISPR-Cas Methods . Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0616-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0616-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0615-5

  • Online ISBN: 978-1-0716-0616-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics