Skip to main content
Log in

Respiratory Complex I: Structure, Redox Components, and Possible Mechanisms of Energy Transduction

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Structural arrangements and properties of redox components of the mitochondrial and bacterial proton-translocating NADH:quinone oxidoreductases are briefly described. A model for the mechanism of proton translocation at first coupling site, which emphasizes participation of specifically Complex I-associated ubisemiquinones, is discussed. An alternative mechanism is proposed where all redox reactions take place in a hydrophilic part of the enzyme and the free energy accumulated as conformational constraint drives the proton pump associated with the hydrophobic polypeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Mitchell, P. (1966) Chemiosmotic Coupling Oxidative and Photosynthetic Pphosphorylation, Glynn Research Ltd.

  2. Mitchell, P. (1979) David Keilin.s Respiratory Chain Concept and Its Chemiosmotic Consequences, The Nobel Foundation.

  3. Fearnley, I. M., and Walker, J. E. (1992) Biochim. Biophys. Acta, 1140, 105–134.

    Google Scholar 

  4. Walker, J. E. (1992) Q. Rev. Biophys., 25, 253–324.

    Google Scholar 

  5. Friedrich, T., and Weiss, H. (1997) J. Theor. Biol., 187, 529–541.

    Google Scholar 

  6. Friedrich, T., and Scheide, D. (2000) FEBS Lett., 479, 1–5.

    Google Scholar 

  7. Vinogradov, A. D. (1998) Biochim. Biophys. Acta, 1364, 169–185.

    Google Scholar 

  8. Ohnishi, T. (1979) in Membrane Proteins in Energy Transduction ( Capaldi, R. A., ed.) Marcel Dekker, Inc., New York, pp. 1–87.

    Google Scholar 

  9. Sled, V. D., Friedrich, T., Leif, H., Weiss, H., Meinhardt, S. W., Fukumori, Y., Caihoun, M. W., Gennis, R. B., and Ohnishi, T. (1993) J. Bioenerg. Biomembr., 25, 347–355.

    Google Scholar 

  10. Robinson, B. H. (1998) Biochim. Biophys. Acta, 1364, 271–286.

    Google Scholar 

  11. Schapira, A. H. V. (1998) Biochim. Biophys. Acta, 1366, 225–233.

    Google Scholar 

  12. Chomyn, A., Mariottini, P., Cleeter, M. W. J., Ragan, C. I., Matsuno-Yagi, A., Hatefi, Y., Doolittle, R. F., and Attardi, G. (1985) Nature, 314, 592–597.

    Google Scholar 

  13. Yagi, T., Yano, T., Di Bernardo, S., and Matsuno-Yagi, A. (1998) Biochim. Biophys. Acta, 1364, 125–133.

    Google Scholar 

  14. Dupuis, A., Chevalett, M., Darrouzet, E., Duborjal, H., Lunardi, J., and Issartel, J. P. (1998) Biochim. Biophys. Acta, 1364, 147–165.

    Google Scholar 

  15. Tuschen, G., Sackmann, U., Nehls, U., Haiker, H., Buse, G., and Weiss, H. (1990) J. Mol. Biol., 213, 845–857.

    Google Scholar 

  16. Hofhaus, G., Weiss, H., and Leonard, K. (1991) J. Mol. Biol., 221, 1027–1043.

    Google Scholar 

  17. Guénebaut, V., Schlitt, A., Weiss, H., Leonard, K., and Friedrich, T. (1998) J. Mol. Biol., 276, 105–112.

    Google Scholar 

  18. Walker, J. E., Arizmendi, J. M., Dupuis, A., Fearnley, I. M., Finel, M., Medd, S. M., Pilkington, S. J., Runswick, M. J., and Skehel, J. M. (1992) J. Mol. Biol., 226, 1051–1072.

    Google Scholar 

  19. Ernster, L., Dallner, G., and Azzone, G. F. (1963) J. Biol. Chem., 238, 1124–1131.

    Google Scholar 

  20. Grivennikova, V. G., Maklashina, E. O., Gavrikova, E. V., and Vinogradov, A. D. (1997) Biochim. Biophys. Acta, 1319, 223–232.

    Google Scholar 

  21. Jeng, M., Holl, C., Crane, F. L., Takahashi, M., Tamura, S., and Folkers, K. (1968) Biochemistry, 7, 1311–1322.

    Google Scholar 

  22. Ushakova, A. V., Grivennikova, V. G., Ohnishi, T., and Vinogradov, A. D. (1999) Biochim. Biophys. Acta, 1409, 143–153.

    Google Scholar 

  23. Degli Esposti, M. (1998) Biochim. Biophys. Acta, 1364, 222–235.

    Google Scholar 

  24. Lümmen, P. (1998) Biochim. Biophys. Acta, 1364, 287–296.

    Google Scholar 

  25. Hatefi, Y., and Rieske, J. S. (1967) Meth. Enzymol., 10, 235–239.

    Google Scholar 

  26. Vinogradov, A. D., Gavrikova, E. V., Grivennikova, V. G., Zharova, T., and Zakharova, N. V. (1999) Biochemistry (Moscow), 64, 1219–1229.

    Google Scholar 

  27. Galante, Y. M., and Hatefi, Y. (1978) Meth. Enzymol., 53, 15–21.

    Google Scholar 

  28. Paech, C., Friend, A., and Singer, T. P. (1982) Biochem. J., 203, 477–481.

    Google Scholar 

  29. Finel, M., Skehel, M., Albracht, S. P. J., Fearnley, I. M., and Walker, J. E. (1992) Biochemistry, 31, 11425–11434.

    Google Scholar 

  30. Brink, J., Hovmöller, S., Ragan, C. I., Cleeter, M. W. J., Boekema, E. J., and van Bruggen, E. F. J. (1987) Eur. J. Biochem., 166, 287–294.

    Google Scholar 

  31. Albracht, S. P. J. (1982) in Flavins and Flavoproteins ( Massey, V., and Williams, C. H., eds.) Elsevier/North-Holland Inc., pp. 759–762.

  32. Van Belzen, R., van Gaalen, M. C. M., Cupyers, P. A., and Albracht, S. P. J. (1990) Biochim. Biophys. Acta, 1017, 152–159.

    Google Scholar 

  33. Van Belzen, R., De Jong, A. M. P., and Albracht, S. P. J. (1992) Eur. J. Biochem., 209, 1019–1022.

    Google Scholar 

  34. Ragan, C. I. (1976) Biochim. Biophys. Acta, 456, 249–290.

    Google Scholar 

  35. Galante, Y. M., and Hatefi, Y. (1979) Arch. Biochem. Biophys., 192, 559–568.

    Google Scholar 

  36. Belogrudov, G., and Hatefi, Y. (1994) Biochemistry, 33, 4571–4576.

    Google Scholar 

  37. Sled, V. D., and Vinogradov, A. D. (1993) Biochim. Biophys. Acta, 1143, 199–203.

    Google Scholar 

  38. Clark, W. M. (1960) Oxidative Reduction Potentials of Organic Systems, Williams and Wilkins, Baltimore, USA.

    Google Scholar 

  39. Mayhew, S. G. (1999) Eur. J. Biochem., 265, 698–702.

    Google Scholar 

  40. Yamaguchi, M., Belogrudov, G. I., and Hatefi, Y. (1998) J. Biol. Chem., 273, 8094–8098.

    Google Scholar 

  41. Gavrikova, E. V., Grivennikova, V. G., Sled, V. D., Ohnishi, T., and Vinogradov, A. D. (1995) Biochim. Biophys. Acta, 1230, 23–30.

    Google Scholar 

  42. Sled, V. D., Rudnitzky, N. I., Hatefi, Y., and Ohnishi, T. (1994) Biochemistry, 33, 10069–10075.

    Google Scholar 

  43. Massey, V., and Palmer, G. (1966) Biochemistry, 5, 3181–3189.

    Google Scholar 

  44. Fecke, W., Sled, V. D., Ohnishi, T., and Weiss, H. (1994) Eur. J. Biochem., 220, 551–558.

    Google Scholar 

  45. Ohnishi, T. (1981) in Mitochondria and Microsomes ( Lee, C. P., Schatz, G., and Dallner, G., eds.) Addison-Wesley Publishing Company, Inc., Advanced Book Program/ World Science Division, pp. 191–216.

  46. Ohnishi, T. (1975) Biochim. Biophys. Acta, 387, 475–490.

    Google Scholar 

  47. Kröger, A., and Unden, G. (1985) in Coenzyme Q ( Lenaz, G., ed.) Wiley, New York, pp. 285–300.

    Google Scholar 

  48. Brandt, U. (1996) Biochim. Biophys. Acta, 1318, 79–91.

    Google Scholar 

  49. Ohnishi, T. (1976) Eur. J. Biochem., 64, 91–98.

    Google Scholar 

  50. Burbaev, D. Sh., Moroz, I. A., Kotlyar, A. B., Sled, V. D., and Vinogradov, A. D. (1989) FEBS Lett., 254, 1, 47–51.

    Google Scholar 

  51. Kotlyar, A. B., Sled, V. D., Burbaev, D. Sh., Moroz, I. A., and Vinogradov, A. D. (1990) FEBS Lett., 264, 17–20.

    Google Scholar 

  52. Vinogradov, A. D. (1993) J. Bioenerg. Biomembr., 25, 367–375.

    Google Scholar 

  53. Meinhardt, S. W., Kula, T., Yagi, T., Lillich, T., and Ohnishi, T. (1987) J. Biol. Chem., 262, 9147–9153.

    Google Scholar 

  54. Meinhardt, S. W., Matsushita, K., Kaback, H. R., and Ohnishi, T. (1989) Biochemistry, 28, 2153–2160.

    Google Scholar 

  55. Krishnamoorthy, G., and Hinkle, P. (1988) J. Biol. Chem., 263, 17566–17575.

    Google Scholar 

  56. Suzuki, H., and King, T. E. (1983) J. Biol. Chem., 258, 352–358.

    Google Scholar 

  57. Kotlyar, A. B., and Vinogradov, A. D. (1990) Biochim. Biophys. Acta, 1019, 151–158.

    Google Scholar 

  58. Albracht, S. P. J., van Belzen, R., and De Jong, A. M. P. (1991) Biol. Chem. Hoppe Seyler, 372, 547.

    Google Scholar 

  59. De Jong, A. M. P., and Albracht, S. P. J. (1994) Eur. J. Biochem., 222, 975–982.

    Google Scholar 

  60. Van Belzen, R., Kotlyar, A. B., Moon, N., Dunham, W. R., and Albracht, S. P. J. (1997) Biochemistry, 36, 886–893.

    Google Scholar 

  61. Albracht, S. P. J., and De Jong, A. M. P. (1997) Biochim. Biophys. Acta, 1318, 92–106.

    Google Scholar 

  62. Vinogradov, A. D., Sled, V. D., Burbaev, D. S., Grivennikova, V. G., Moroz, I. A., and Ohnishi, T. (1995) FEBS Lett., 370, 83–87.

    Google Scholar 

  63. Ohnishi, T., Magnitsky, S., Toulokhonova, L., Yano, T., Yagi, T., Burbaev, D. S., and Vinogradov, A. D. (1999) Biochem. Soc. Trans., 27, 586–591.

    Google Scholar 

  64. Ohnishi, T., Sled, V. D., Yano, T., Yagi, T., Burbaev, D. S., and Vinogradov, A. D. (1998) Biochim. Biophys. Acta, 1365, 301–308.

    Google Scholar 

  65. John, P., and Whatley, F. R. (1977) Biochim. Biophys. Acta, 463, 129–153.

    Google Scholar 

  66. Kotlyar, A. B., Albracht, S. P. J., and van Spanning, R. J. M. (1998) Biochim. Biophys. Acta, 1365, 53–59.

    Google Scholar 

  67. Okun, J. G., Lummen, P., and Brandt, U. (1999) J. Biol. Chem., 274, 2625–2630.

    Google Scholar 

  68. Friedrich, T., van Heek, P., Lief, H., Ohnishi, T., Forche, E., Kunze, B., Jansen, R., Trowitzsch-Kienast, W., Höfle, G., Reichenbah, H., and Weiss, H. (1994) Eur. J. Biochem., 219, 691–698.

    Google Scholar 

  69. Earley, F. G. P., and Ragan, C. I. (1984) Biochem. J., 224, 525–534.

    Google Scholar 

  70. Roth, R., and Hägerhäll, C. (2001) Biochim. Biophys. Acta, 1504, 352–362.

    Google Scholar 

  71. Darrouzet, E., Issartel, J. B., Lunardi, J., and Dupuis, A. (1998) FEBS Lett., 431, 34–38.

    Google Scholar 

  72. Prieur, I., Lunardi, J., and Dupuis, A. (2001) Biochim. Biophys. Acta, 1504, 173–178.

    Google Scholar 

  73. Schuler, F., Yano, T., Di Bernardo, S., Yagi, T., Yankovskaya, V., Singer, T. P., and Casida, J. E. (1999) Proc. Natl. Acad. Sci. USA, 96, 4149–4153.

    Google Scholar 

  74. Suzuki, H., and Ozawa, T. (1986) Biochem. Biophys. Res. Commun., 138, 1237–1242.

    Google Scholar 

  75. Fisher, N., and Rich, P. (2000) J. Mol. Biol., 296, 1153–1162.

    Google Scholar 

  76. Papa, S., Lorusso, M., and Capitanio, N. (1994) J. Bioenerg. Biomembr., 26, 609–618.

    Google Scholar 

  77. Skulachev, V. P. (1975) Curr. Top. Bioenerg., 4, 127–185.

    Google Scholar 

  78. Babcock, G. T., and Wikström, M. (1992) Nature, 356, 301–308.

    Google Scholar 

  79. Hinkle, P. C. (1981) in Chemiosmotic Proton Circuits in Biological Membranes ( Skulachev, V. P., and Hinkle, P. C., eds.) Addison-Wesley Publ. Inc., Massachusetts, pp. 49–58.

    Google Scholar 

  80. Galkin, A. S., Grivennikova, V. G., and Vinogradov, A. D. (1999) FEBS Lett., 451, 157–161.

    Google Scholar 

  81. Mitchell, P. (1975) FEBS Lett., 56, 1–6.

    Google Scholar 

  82. Mitchell, P. (1976) J. Theor. Biol., 2, 327–367.

    Google Scholar 

  83. Zhang, Z., Huang, L., Shulmeister, V. M., Young-In Chi, Kim, K. K., Li-Wei Hung, Crofts, A. R., Berry, E. A., and Sung-Hou Kim (1998) Nature, 392, 677–684.

    Google Scholar 

  84. Volbeda, A., Charon, M.-H., Piras, C., Hatchikian, E. C., Frey, M., and Fontecilla-Camps, J. C. (1995) Nature, 373, 580–587.

    Google Scholar 

  85. Chapman, A., Cammack, R., Hatchikian, C. E., McCracken, J., and Peisach, J. (1988) FEBS Lett., 242, 134–138.

    Google Scholar 

  86. Tran-Betcke, A., Warnecke, U., Böcker, C., Zabarosch, C., and Friedrich, B. (1990) J. Bacteriol., 172, 2920–2929.

    Google Scholar 

  87. Galkin, A. S., Grivennikova, V. G., and Vinogradov, A. D. (2001) Biochemistry (Moscow), 66, 435–443.

    Google Scholar 

  88. Dutton, P. L., Moser, C. C., Sled, V. D., Daldal, F., and Ohnishi, T. (1998) Biochim. Biophys. Acta, 1364, 245–257.

    Google Scholar 

  89. Zharova, T. V., and Vinogradov, A. D. (1997) Biochim. Biophys. Acta, 1320, 256–264.

    Google Scholar 

  90. Zakharova, N. V., Zharova, T. V., and Vinogradov, A. D. (1999) FEBS Lett., 444, 211–216.

    Google Scholar 

  91. Mitchell, P. (1974) FEBS Lett., 43, 189–194.

    Google Scholar 

  92. Pedersen, P. L. (ed.) (1996) J. Bioenerg. Biomembr., 28, 398–451.

    Google Scholar 

  93. Boyer, P. D. (1975) FEBS Lett., 58, 1–6.

    Google Scholar 

  94. Tsunoda, S. P., Aggeler, R., Yoshida, M., and Capaldi, R. A. (2001) Proc. Natl. Acad. Sci. USA, 98, 898–902.

    Google Scholar 

  95. Sambongi, Y., Ueda, I., Wada, Y., and Futai, M. (2000) J. Bioenerg. Biomembr., 32, 441–448.

    Google Scholar 

  96. Forgac, M. (2000) J. Exp. Biol., 203, 61–70.

    Google Scholar 

  97. Jorgensen, P. L., Nielsen, J. M., Rasnussen, J. H., and Pedersen, P. A. (1998) Biochim. Biophys. Acta, 1365, 65–70.

    Google Scholar 

  98. Toyochima, C., Nakasako, M., Nomura, H., and Ogawa, H. (2000) Nature, 405, 647–655.

    Google Scholar 

  99. Unemoto, T., and Hayashi, M. (1993) J. Bioenerg. Biomembr., 25, 385–391.

    Google Scholar 

  100. Krebs, W., Steuber, J., Gemperli, A. C., and Dimroth, P. (1999) Mol. Microbiol., 33, 590–598.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinogradov, A.D. Respiratory Complex I: Structure, Redox Components, and Possible Mechanisms of Energy Transduction. Biochemistry (Moscow) 66, 1086–1097 (2001). https://doi.org/10.1023/A:1012476728710

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012476728710

Navigation