Skip to main content

Advertisement

Log in

Gene therapy for Fabry disease

  • Published:
Journal of Inherited Metabolic Disease

Abstract

Fabry disease is an X-linked metabolic disorder caused by a deficiency ofα-galactosidase A (α-Gal A). Lack of this lysosomal hydrolase results in theaccumulation of galactose-terminal glycosphingolipids in a number of tissues,including vascular endothelial cells. Premature death is predominantly associated withvascular conditions of the heart, kidneys and brain. Historically, treatment has largelybeen palliative. Alternative treatments for many lysosomal storage diseases have beendeveloped, including allogeneic organ and bone marrow transplantation, enzymereplacement therapy, and gene therapy. Significant clinical risks still exist withallogeneic transplantations. α-Gal A enzyme replacement therapy has beenimplemented in clinical trials. This approach has been effective but may havelimitations for long-term systemic or cost-effective correction. As an alternative, genetherapy approaches, involving a variety of gene delivery systems, have been pursuedfor the amelioration of Fabry disease. Fabry disease is a compelling disorder for genetherapy, as target cells are readily accessible and relatively low levels of enzymecorrection may suffice to reduce storage. Importantly, metabolic cooperativity effectsare also manifested in Fabry disease, wherein corrected cells secrete α-Gal A that cancorrect bystander cells. In addition, a broad therapeutic window probably exists, andmouse models of Fabry disease have been generated to assist studies. As an example,in vitro and in vivo studies using α-Gal A-transduced haematopoietic cells from Fabrymice have demonstrated enzymatic correction of recipient cells and dissemination ofα-Gal A upon transplantation, leading to reduced lipid storage in a number ofclinically relevant organs. This corrective enzymatic effect has recently been shown tobe even further enhanced upon pre-selection of therapeutically transduced cells priorto transplantation. This review will briefly detail current gene delivery methods andsummarize results to date in the context of gene therapy for Fabry disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abe A, Gregory S, Lee L, et al (2000) Reduction of globotriaosylceramide in Fabry disease mice by substrate deprivation. J Clin Invest 105: 1563–1571.

    Article  PubMed  CAS  Google Scholar 

  • Anderson WF (1998) Human gene therapy. Nature 392: 25–30.

    Article  PubMed  CAS  Google Scholar 

  • Anwer K, Bailey A, Sullivan SM (2000) Targeted gene delivery: A two-pronged approach. Crit Rev Ther Drug Carrier Syst 17: 377–424.

    PubMed  CAS  Google Scholar 

  • Balague C, Zhou J, Dai Y, et al (2000) Sustained high-level expression of full-length human factor VIII and restoration of clotting activity in hemophilic mice using a minimal adenovirus vector. Blood 95: 820–828.

    PubMed  CAS  Google Scholar 

  • Benihoud K, Yeh P, Perricaudet M (1999) Adenovirus vectors for gene delivery. Curr Opin Biotechnol 10: 440–447.

    Article  PubMed  CAS  Google Scholar 

  • Berns K (1996) Parvoviridae: The viruses and their replication. In Fields B, Knipe DM, Howley PM, Chancock RM, eds. Fundamental Virology. Philadelphia: Lippincott-Raven, 1017–1041.

    Google Scholar 

  • Bishop DF, Calhoun DH, Bernstein HS, Hantzopoulos P, Quinn M, Desnick RJ (1986) Human α-galactosidase A: nucleotide sequence of a cDNA clone encoding the mature enzyme. Proc Natl Acad Sci USA 83: 4859–4863.

    Article  PubMed  CAS  Google Scholar 

  • Blaese RM, Culver KW, Miller AD, et al (1995) T lymphocyte-directed gene therapy for ADA-SCID: Initial trial results after 4 years. Science 270: 475–480.

    PubMed  CAS  Google Scholar 

  • Blau CA, Peterson KR, Drachman JG, Spencer DM (1997) A proliferation switch for genetically modified cells. Proc Natl Acad Sci USA 94: 3076–3081.

    Article  PubMed  CAS  Google Scholar 

  • Bordignon C, Notarangelo, LD, Nobili N, et al (1995) Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients. Science 270: 470–475.

    PubMed  CAS  Google Scholar 

  • Brady RO, Gal AE, Bradley RM, Martensson E, Warshaw AL, Laster L (1967) Enzymatic defect in Fabry disease. N Engl J Med 276: 1163–1167.

    Article  PubMed  CAS  Google Scholar 

  • Brady RO, Tallman JF, Johnson WG, et al (1973) Replacement therapy for inherited enzyme deficiency: use of purified ceramidetrihexosidase in Fabry's disease. N Engl J Med 289: 9–14.

    Article  PubMed  CAS  Google Scholar 

  • Budker V, Gurevich V, Hagstrom JE, Bortzov F, Wolff JA (1996) pH-sensitive, cationic liposomes: a new synthetic virus-like vector. Nat Biotechnol 14: 760–764.

    Article  PubMed  CAS  Google Scholar 

  • Bunting KD, Galipeau J, Topham D, Benaim E, Sorrentino BP (1998) Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice. Blood 92: 2269–2279.

    PubMed  CAS  Google Scholar 

  • Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK (1993) Vesticular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 90: 8033–8037.

    Article  PubMed  CAS  Google Scholar 

  • Cavazzana-Calvo M, Hacein-Bey S, de St Basile G, et al (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288: 669–672.

    Article  PubMed  CAS  Google Scholar 

  • Challita PM, Kohn DB (1994) Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo. Proc Natl Acad Sci USA 91: 2567–2571.

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Fu J, Tsukamoto A, Hawley RG (1996) Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nat Biotechnol 14: 606–609.

    Article  PubMed  CAS  Google Scholar 

  • Cheung AT, Dayanandan B, Lewis JT, et al (2000) Glucose-dependent insulin release from genetically engineered K cells. Science 290: 1959–1962.

    Article  PubMed  CAS  Google Scholar 

  • Clackson T (1998) Redesigning small molecule-protein interfaces. Curr Opin Struct Biol 4: 451–458.

    Article  Google Scholar 

  • Cosset F-C, Takeuchi Y, Battini J-Y, Weiss, RA, Collins MKL (1995) High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 69: 7430–7436.

    PubMed  CAS  Google Scholar 

  • Crystal RG (1995) Transfer of genes to humans: early lessons and obstacles to success. Science 270: 404–410.

    PubMed  CAS  Google Scholar 

  • Dang Q, Auten J, Plavec I (2000) Human beta interferon scaffold attachment region inhibits de novo methylation and confers long-term, copy number-dependent expression to a retroviral vector. J Virol 74: 2671–2678.

    Article  PubMed  CAS  Google Scholar 

  • Dawson G, Sweeley CC (1970) In vivo studies on glycosphingolipid metabolism in porcine blood. J Biol Chem 245: 410–416.

    PubMed  CAS  Google Scholar 

  • Desnick RJ, Dean KJ, Grabowski G, Bishop DF, Sweeley CC (1979) Enzyme therapy in Fabry disease: Differential in vivo plasma clearance and metabolic effectiveness of plasma and splenic α-galactosidase A isozymes. Proc Natl Acad Sci USA 76: 5326–5330.

    Article  PubMed  CAS  Google Scholar 

  • Desnick RJ, Ioannou YA, Eng CM (2001) α-galactosidase A deficiency: Fabry disease. In Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease. 8th edition. New York: McGraw-Hill Inc, 3733–3774.

    Google Scholar 

  • Dongsheng D, Prerna S, Jusan Y, et al (1998) Circular intermediates of recombinant adenoassociated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J Virol 72: 8568–8577.

    Google Scholar 

  • Eng CM, Banikazemi M, Gordon RE et al (2001) A phase 1/2 clinical trial of enzyme replacement in Fabry disease: Pharmacokinetic, substrate clearance and safety studies. Am J Hum Genet 68: 711–722.

    Article  PubMed  CAS  Google Scholar 

  • Erlich S, Miranda SRP, Visser JWM, Dagan A, Gatt S, Schuchman EH (1999) Fluorescence-based selection of gene-corrected hematopoietic stem and progenitor cells from acid sphingomyelinasedeficient mice: Implications for Niemann-Pick disease gene therapy and the development of improved stem cell gene transfer procedures. Blood 93: 80–86.

    PubMed  CAS  Google Scholar 

  • Fan J-Q, Ishii S, Asano N, Suzuki Y (1999) Accelerated transport and maturation of lysosomal α-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med 5: 112–115.

    Article  PubMed  CAS  Google Scholar 

  • Grignani F, Kinsella T, Mencarelli A, et al (1998) High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein. Cancer Res 58: 14–19.

    PubMed  CAS  Google Scholar 

  • Greber UF, Webster P, Weber J, Helenius A (1996) The role of the adenovirus protease on virus entry into cells. EMBO J 15: 1766–1777.

    PubMed  CAS  Google Scholar 

  • Gutgsell NS, Malek TR (1994) Formation of high affinity IL-2 receptors is dependent on a nonligand binding region of the α subunit. J Immunol 153: 3899–3907.

    PubMed  CAS  Google Scholar 

  • Halene S, Kohn DB (2000) Gene therapy using hematopoietic stem cells: Sisyphus approaches the crest. Hum Gene Ther 11: 1259–1267.

    Article  PubMed  CAS  Google Scholar 

  • Hanenberg H, Xiao XL, Dilloo D, Hashino K, Kato I, Williams DA (1996) Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat Med 2: 876–882.

    Article  PubMed  CAS  Google Scholar 

  • Hobbs JR, Hugh-Jones K, Barrett AJ, et al (1981) Reversal of clinical features of Hurler's disease and biochemical improvement after treatment by bone-marrow transplantation. Lancet 2: 709–712.

    Article  PubMed  CAS  Google Scholar 

  • Hodgson CP, Solaiman F (1996) Virosomes: Cationic liposomes enhance retroviral transduction. Nat Biotechnol 14: 339–342.

    Article  PubMed  CAS  Google Scholar 

  • Hoogerbrugge PM, Brouwer OF, Bordigoni P, et al (1995) Allogeneic bone marrow transplantation for lysosomal storage diseases. Lancet 345: 1398–1402.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MS (1996) Adenoviruses. In Fields B, Knipe DM, Howley PM, Chancock RM, eds. Fundamental Virology. Philadelphia: Lippincott-Raven, 2149–2171.

    Google Scholar 

  • Inoue N, Russell DW (1998) Packaging cells based on inducible gene amplification for the production of adeno-associated virus vectors. J Virol 72: 7024–7031.

    PubMed  CAS  Google Scholar 

  • Ioannou YA (2000) Gene therapy for lysosomal storage disorders with neuropathology. J Am Soc Nephrol 11: 1542–1547.

    PubMed  CAS  Google Scholar 

  • Ioannou YA, Zeidner KM, Gordon RE, Desnick RJ (2001) Fabry disease: Preclinical studies demonstrate the effectiveness of α-galactosidase A replacement in enzyme-deficient mice. Am J Hum Genet 68: 14–25.

    Article  PubMed  CAS  Google Scholar 

  • Jung S-C, Han IP, Limaye A, et al (2001) Adeno-associated viral vector-mediated gene transfer results in long-term enzymatic and functional correction in multiple organs of Fabry mice. Proc Natl Acad Sci USA 98: 2676–2681.

    Article  PubMed  CAS  Google Scholar 

  • Kalberer CP, Pawliuk R, Imren S, et al (2000) Preselection of retrovirally transduced bone marrow avoids subsequent stem cell gene silencing and age-dependent extinction of expression of human beta-globin in engrafted mice. Proc Natl Acad Sci USA 97: 5411–5415.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson S (1991) Treatment of genetic defects in hematopoietic cell function by gene transfer. Blood 78: 2481–2492.

    PubMed  CAS  Google Scholar 

  • Karp BI, Ali S, Takenaka T, Brady RO, Medin JA (1999) Modification of the human α-galactosidase A (α-Gal A) C-terminus enhances uptake by Fabry patient fibroblasts. FASEB J 13: A1403.

    Google Scholar 

  • Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: The art of turning infectious agents into vehicles of therapeutics. Nat Med 7: 33–40.

    Article  PubMed  CAS  Google Scholar 

  • Kotin RM, Linden RM, Berns KI (1992) Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J 11: 5071–5078.

    PubMed  CAS  Google Scholar 

  • Ledley FD (1994) Non-viral gene therapy. Curr Opin Biotech 5: 626–636.

    Article  PubMed  CAS  Google Scholar 

  • Lehrman S (1999) Virus treatment questioned after gene therapy death. Nature 401: 517–518.

    Article  PubMed  CAS  Google Scholar 

  • Lemansky P, Bishop DF, Desnick RJ, Hasilik A, von Figura K (1987) Synthesis and processing of α-galactosidase A in human fibroblasts. Evidence for different mutations in Fabry disease. J Biol Chem 262: 2062–2065.

    PubMed  CAS  Google Scholar 

  • Li J, Samulski RJ, Xiao X (1997) Role for highly regulated rep gene expression in adeno-associated virus vector production. J Virol 71: 5236–5243.

    PubMed  CAS  Google Scholar 

  • Lieber A, Steinwaerder DS, Carlson CA, Kay MA (1999) Integrating adenovirus-adeno-associated virus hybrid vectors devoid of all viral genes. J Virol 73: 9314–9324.

    PubMed  CAS  Google Scholar 

  • Lorincz M, Herzenburg LA, Diwu Z, Barranger JA, Kerr WG (1997) Detection and isolation of gene-corrected cells in Gaucher disease via a fluorescence-activated cell sorter assay for lysosomal glucocerebrosidase activity. Blood 89: 3412–3420.

    PubMed  CAS  Google Scholar 

  • Lutzko C, Kruth S, Abrams-Ogg ACG, et al (1999) Genetically corrected autologous stem cells engraft, but host immune responses limit their utility in canine α-L-iduronidase deficiency. Blood 93: 1895–1905.

    PubMed  CAS  Google Scholar 

  • Malech HL, Maples PB, Whiting-Theobald N, et al (1997) Prolonged production of NAPDH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc Natl Acad Sci USA 94: 12133–12138.

    Article  PubMed  CAS  Google Scholar 

  • Markowitz D, Goff S, Bank A (1988a) A safe packaging line for gene transfer: Separating viral genes on two different plasmids. J Virol 62: 1120–1124.

    PubMed  CAS  Google Scholar 

  • Markowitz D, Goff S, Bank A (1988b) Construction and use of a safe and efficient amphotropic packaging cell line. Virology 167: 400–406.

    PubMed  CAS  Google Scholar 

  • Medin JA, Karlsson S (1997a) Viral vectors for gene therapy of hematopoietic cells. Immunotechnology 3: 3–19.

    Article  PubMed  CAS  Google Scholar 

  • Medin JA, Karlsson S (1997b) Selection of retrovirally transduced cells to enhance the efficiency of gene therapy. Proc Assoc Am Physicians 109: 111–119.

    PubMed  CAS  Google Scholar 

  • Medin JA, Tudor M, Simovitch R, Quirk JM, Jacobson S, Murray GJ, Brady RO (1996) Correction in trans for Fabry disease: Expression, secretion, and uptake of α-galactosidase A in patientderived cells driven by a high-titer recombinant retroviral vector. Proc Natl Acad Sci USA 93: 7917–7922.

    Article  PubMed  CAS  Google Scholar 

  • Miao CH, Nakai H, Thompson AR, et al (2000) Nonrandom transduction of recombinant adenoassociated virus vectors in mouse hepatocytes in vivo: Cell cycling does not influence hepatocyte transduction. J Virol 74: 3793–3803.

    Article  PubMed  CAS  Google Scholar 

  • Miller AD, Garcia JV, von Suhr N, Lynch CM, Wilson C, Eiden MV (1991) Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol 65: 2220–2224.

    PubMed  CAS  Google Scholar 

  • Miller DG, Adam MA, Miller AD (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10: 4239–4242.

    PubMed  CAS  Google Scholar 

  • Monahan PE, Samulski RJ (2000) Adeno-associated virus vectors for gene therapy: More pros than cons? Mol Med Today 6: 433–440.

    Article  PubMed  CAS  Google Scholar 

  • Morsy MA, Caskey CT (1999) Expanded-capacity adenoviral vectors-the helper-dependent vectors. Mol Med Today 5: 18–24.

    Article  PubMed  CAS  Google Scholar 

  • Nakai H, Storm TA, Kay MA (2000) Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nat Biotechnol 5: 527–532.

    Google Scholar 

  • Nakao S, Takenaka T, Maeda M, et al (1995) An atypical variant of Fabry's disease in men with left ventricular hypertrophy. N Engl J Med 333: 288–293.

    Article  PubMed  CAS  Google Scholar 

  • Nishi M, Ishida Y, Honjo T (1988) Expression of functional interleukin-2 receptors in human light chain/Tac transgenic mice. Nature 331: 267–269.

    Article  PubMed  CAS  Google Scholar 

  • Novo FJ, Gorecki DC, Goldspink G, MacDermot KD (1997) Gene transfer and expression of human α-galactosidase from mouse muscle in vitro and in vivo. Gene Ther 4: 488–492.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K, Sugamata K, Funamoto N, Abe T, Sato T, Nagashima K, Ohkawa S (1990) Restricted accumulation of globotriaosylceramide in the hearts of atypical cases of Fabry's disease. Hum Pathol 21: 1067–1073.

    Article  PubMed  CAS  Google Scholar 

  • Ohshima T, Murray GJ, Swaim WD, et al (1997) α-galactosidase A deficient mice: A model of Fabry disease. Proc Natl Acad Sci USA 94: 2540–2544.

    Article  PubMed  CAS  Google Scholar 

  • Ohshima T, Schiffman R, Murray GJ, et al (1999) Aging accentuates and bone marrow transplantation ameliorates metabolic defects in Fabry disease mice. Proc Natl Acad Sci USA 96: 6423–6427.

    Article  PubMed  CAS  Google Scholar 

  • Ohsugi K, Kobayashi K, Itoh K, Sakuraba H, Sakuragawa N (2000) Enzymatic corrections for cells derived from Fabry disease patients by a recombinant adenovirus vector. J Hum Genet 45: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Parks RJ (2000) Improvements in adenoviral vector technology: Overcoming barriers for gene therapy. Clin Genet 58: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Parks RJ, Bramson JL, Wan Y, Addison CL, Graham FL (1999a) Effects of stuffer DNA on transgene expression from helper-dependent adenovirus vectors. J Virol 73: 8027–8034.

    PubMed  CAS  Google Scholar 

  • Parks RJ, Chen L, Anton M, Sankar U, Rudnicki MA, Graham FL (1996) A helper-dependent adenovirus vector system: Removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci USA 93: 13565–13570.

    Article  PubMed  CAS  Google Scholar 

  • Parks RJ, Evelegh CM, Graham FL (1999b) Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration. Gene Ther 6: 1565–1573.

    Article  PubMed  CAS  Google Scholar 

  • Pawliuk R, Bachelot T, Wise RJ, Mathews-Roth MM, Leboulch P (1999) Long-term cure of the photosensitivity of murine erythropoietic protoporphyria by preselective gene therapy. Nat Med 5: 768–773.

    Article  PubMed  CAS  Google Scholar 

  • Qasba P, D'Costa J, Limaye A, et al (2000) In vitro gene therapy for Fabry disease using lentiviral vector (HIV-2). Mol Ther 1: S73.

    Google Scholar 

  • Qin G, Takenaka T, Telsch K, et al (2001) Preselective gene therapy for Fabry disease. Proc Natl Acad Sci USA 98: 3428–3433.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA, Blaese RM, Brenner MK, et al (2000) Human gene marker/therapy clinical protocols. Hum Gene Ther 11: 919–979.

    Article  PubMed  CAS  Google Scholar 

  • Ross PC, Hui SW (1999) Lipoplex size is a major determinant of in vitro lipofection efficiency. Gene Ther 6: 651–659.

    Article  PubMed  CAS  Google Scholar 

  • Russell WC (2000) Update on adenovirus and its vectors. J Gen Virol 81: 2573–2604.

    PubMed  CAS  Google Scholar 

  • Schiedner G, Morral N, Parks RJ, et al (1998) Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet 18: 180–183.

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann R, Murray GJ, Treco D, et al (2000) Infusion of α-galactosidase A reduces tissue globotriaosylceramide storage in patients with Fabry disease. Proc Natl Acad Sci USA 97: 365–370.

    Article  PubMed  CAS  Google Scholar 

  • Schoen P, Chonn A, Cullis PR, Wilschut J, Scherrer P (1999) Gene transfer mediated by fusion protein hemagglutinin reconstituted in cationic lipid vesicles. Gene Ther 6: 823–832.

    Article  PubMed  CAS  Google Scholar 

  • Simoes S, Slepushkin V, Gaspar R, de Lima MC, Duzgunes N (1998) Gene delivery by negatively charged ternary complexes of DNA, cationic liposomes and transferrin or fusigenic peptides. Gene Ther 5: 955–964.

    Article  PubMed  CAS  Google Scholar 

  • Sorrentino BP, Brandt SJ, Bodine D, et al (1992) Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human mdr-1. Science 257: 99–103.

    PubMed  CAS  Google Scholar 

  • Steinwaerder DS, Lieber A (2000) Insulation from viral transcriptional regulatory elements improves inducible transgene expression from adenovirus vectors in vitro and in vivo. Gene Ther 7: 556–567.

    Article  PubMed  CAS  Google Scholar 

  • Stripecke R, del Carmen Villacres M, Skelton DC, Satake N, Halene S, Kohn DB (1999) Immune response to green fluorescent protein: Implications for gene therapy. Gene Ther 6: 1305–1312.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto Y, Aksentijevich I, Murray GJ, Brady RO, Pastan I, Gottesman MM (1995) Retroviral coexpression of a multidrug resistance gene (MDR1) and human α-galactosidase A for gene therapy of Fabry disease. Hum Gene Ther 6: 905–915.

    PubMed  CAS  Google Scholar 

  • Sweeley CC, Klionsky B (1963) Fabry disease: Classification as a sphingolipidosis and partial characterization of a novel glycolipid. J Biol Chem 238: 3148–3150.

    PubMed  CAS  Google Scholar 

  • Takenaka T, Hendrickson CS, Tworek DM, et al (1999a) Enzymatic and functional correction along with long-term enzyme secretion from transduced bone marrow hematopoietic stem/progenitor and stromal cells derived from patients with Fabry disease. Exp Hematol 27: 1149–1159.

    Article  PubMed  CAS  Google Scholar 

  • Takenaka T, Murray GJ, Qin G, et al (2000) Long-term enzyme correction and lipid reduction in multiple organs of primary and secondary transplanted Fabry mice receiving transduced bone marrow cells. Proc Natl Acad Sci USA 97: 7515–7520.

    Article  PubMed  CAS  Google Scholar 

  • Takenaka T, Qin G, Brady RO, Medin JA (1999b) Circulating α-galactosidase A derived from transduced bone marrow cells: Relevance for corrective gene transfer for Fabry disease. Hum Gene Ther 10: 1931–1939.

    Article  PubMed  CAS  Google Scholar 

  • Takiyama N, Dunigan JT, Vallor MJ, Kase R, Sakuraba H, Barranger JA (1999) Retrovirus-mediated transfer of human α-galactosidase A gene to human CD34+ hematopoietic progenitor cells. Hum Gene Ther 10: 2881–2889.

    Article  PubMed  CAS  Google Scholar 

  • Touraine JL, Malik MC, Perrot H, et al (1979) Fabry's disease: Two patients improved by fetal liver cells. Nouv Presse Med 8: 1499–1503.

    PubMed  CAS  Google Scholar 

  • Vigna E, Naldini L (2000) Lentiviral vectors: Excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med 2: 308–316.

    Article  PubMed  CAS  Google Scholar 

  • Vogt VM (1997) Retroviral virions and genomes. In Coffin J, Hughes SH, Varmus HE, Miller AD, eds. Retroviruses. New York: Cold Springs Harbor Laboratory Press, 27–69.

    Google Scholar 

  • Voss SD, Robb RJ (1995) Receptor for interleukin-2 (IL-2). In Nicola NA, ed. Guidebook to Cytokines and their Receptors. Oxford, New York, Tokyo: Oxford University Press, 31–37.

    Google Scholar 

  • Wagner JE (1994) Umbilical cord blood transplantation: Overview of the clinical experience. Blood Cells 20: 227–234.

    PubMed  CAS  Google Scholar 

  • Walkley SU, Thrall MA, Dobrenis K, et al (1994) Bone marrow transplantation corrects the enzyme defect of the central nervous system in a lysosomal storage disease. Proc Natl Acad Sci USA 91: 2970–2974.

    Article  PubMed  CAS  Google Scholar 

  • Wang AM, Ioannou YA, Zeidner KM, et al (1996) Fabry disease: Generation of a mouse model with α-galactosidase A deficiency. Am J Hum Genet 59: A208.

    Google Scholar 

  • Wersto RP, Rosenthal ER, Seth PK, Eissa NT, Donahue RE (1998) Recombinant, replicationdefective adenovirus gene transfer vectors induce cell cycle dysregulation and inappropriate expression of cyclin proteins. J Virol 72: 9491–9502.

    PubMed  CAS  Google Scholar 

  • Whitley CB, Ramsay NKC, Kersey JH, Krivit W (1986) Bone marrow transplantation for Hurler syndrome: Assessment of metabolic correction. Birth Defects 22: 7–24.

    PubMed  CAS  Google Scholar 

  • Wolfe JH, Sands MS, Barker JE, et al (1992) Reversal of pathology in murine mucopolysaccharidosis type VII by somatic cell gene transfer. Nature 360: 749–753.

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Li J, Samulski RJ (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72: 2224–2232.

    PubMed  CAS  Google Scholar 

  • Ziegler RJ, Yew NS, Li C, et al (1999) Correction of enzymatic and lysosomal storage defects in Fabry mice by adenovirus-mediated gene transfer. Hum Gene Ther 10: 1667–1682.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sitaskas, C., Medin, J.A. Gene therapy for Fabry disease. J Inherit Metab Dis 24 (Suppl 2), 25–41 (2001). https://doi.org/10.1023/A:1012455421014

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012455421014

Keywords

Navigation