Skip to main content
Log in

Measure for Approximation of Fourier Optics

  • Published:
Measurement Techniques Aims and scope

Abstract

The technique of Fourier holography is considered from the point of view of the construction of an algebraic model. It is shown that the technique yields a construction of a semigroup of fuzzy subsets with convolution as addition and correlation as subtraction. It is proved that in an approximation to linearity of the Fourier transformation, the Sugeno λ-measure, which takes fuzzy values, is an appropriate tool for Fourier optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. T. S. Yu and J. Suganda, Optical Signal Processing, Computing, and Neural Networks, Wiley, New York (1992).

    Google Scholar 

  2. D. C. Wunsh et al., Appl. Opt., 32, No. 8, 1399 (1993).

    Google Scholar 

  3. A. V. Pavlov, Izmer. Tekh., No. 12, 23 (1999).

    Google Scholar 

  4. S. Ishikawa, Fuzzy Sets and Systems, 87, 181 (1997).

    Google Scholar 

  5. S. Ishikawa, Fuzzy Sets and Systems, 90, 277 (1997).

    Google Scholar 

  6. S. Ishikawa, Fuzzy Sets and Systems, 100, 291 (1997).

    Google Scholar 

  7. G. I. Vasilenko and L. M. Tsibul'kin, Holographic Recognizers [in Russian], Radio i Svyaz', Moscow (1985).

    Google Scholar 

  8. A. Kofman, Introduction to the Theory of Fuzzy Sets [Russian translation], Radio i Svyaz', Moscow (1982).

    Google Scholar 

  9. D. A. Pospelov (ed.), Fuzzy Sets in Models of Control and Artificial Intelligence [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  10. R. Kohler, L. Burkhardt, and L. Lin, Optical Holography [Russian translation], Mir, Moscow (1973).

    Google Scholar 

  11. R. Landauer, Quantum Computers and Quantum Computations [Russian translation], vol. II, Izhevsk (1999), p. 9.

    Google Scholar 

  12. G. Korn and T. Korn, Handbook on Mathematics [Russian translation], Moscow (1974).

  13. M. Sugeno, Trans. SICE, 8, No. 2, 95 (1972).

    Google Scholar 

  14. De Luca and S. Termini, Inform. Control, 20, 301 (1972).

    Google Scholar 

  15. I. Z. Batyrshin, Applied Multidimensional Statistical Analysis [in Russian], Nauka, Moscow (1978), p. 345.

    Google Scholar 

  16. G. Birkhoff, Lattice Theory [Russian translation], Nauka, Moscow (1984).

    Google Scholar 

  17. A. N. Kolmogorov, Fundamental Concepts of the Theory of Probability [in Russian], ONTI, Moscow–Leningrad (1936).

    Google Scholar 

  18. W. Pedrycz, A. V. Vasilakos, and A. Gacek, Proc. ACM Symposium on Appl. Computing'2000, p. 101.

  19. E. Pap, Nonlinear Anal. Theory. Methods and Appl., 30, No. 1, 31 (1997).

    Google Scholar 

  20. T. D. Pham and H. Yan, Fuzzy Sets and Systems, 90, 255 (1997).

    Google Scholar 

  21. M. Grabusch, H. T. Nguen, and E. A. Walker, Acad. Publ., Dordrecht (1995).

  22. I. A. Brusakova, Vopr. Proektir. Izmer. Sistem (GETU, Moscow), vyp. 507, 21 (1997).

    Google Scholar 

  23. A. S. Krivov and S. V. Marinko, Izmer. Tekh., No. 7, 12 (1996).

    Google Scholar 

  24. L. A. Zadeh, Inform. Control, 8, 338 (1965).

    Google Scholar 

  25. D. Hilbert and P. Bernays, Foundations of Mathematics. Logical Calculi and the Formalization of Arithmetic [Russian translation], Moscow (1979).

  26. D. Dubois and H. Prade, Internat. J. Syst. Sci., 9, 613 (1978).

    Google Scholar 

  27. A. V. Pavlov, '98 (Accepted Post-Deadline Papers), Brugge (Belgium) (1998), p. 7.

  28. L. A. Zadeh, The Concept of a Linguistic Variable and Its Application to the Approximate Decisions [Russian translation], Moscow (1976).

  29. E. Trilyas, K. Alsina, and A. Valverde, Fuzzy Sets and Theory of Potentiality [Russian translation], R. R. Yager (ed.), Moscow (1986), p. 199.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlov, A.V. Measure for Approximation of Fourier Optics. Measurement Techniques 44, 474–481 (2001). https://doi.org/10.1023/A:1012354002339

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012354002339

Keywords

Navigation