Skip to main content
Log in

Long-Term Creep of Hybrid Aramid/Glass-Fiber-Reinforced Plastics

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

The results of experimental investigation of the long-term creep of SVM aramid fibers, EDT-10 epoxy resin, aramid-epoxy FRP (fiber-reinforced plastics), glass-epoxy FRP, and aramid/glass-epoxy hybrid FRP with different volume fractions of aramid and glass fibers are presented. The long-term tests were continued for 50,000 h (5.7 years). A structural approach for predicting the long-term creep from the properties and content of the components is considered. The effect of hybridization (partial replacement of the aramid fibers by glass fibers) on the inelastic deformation of hybrid FRP is discussed. The redistribution of stresses in the components during long-term creep of the hybrid composites is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Skudra, E. Z. Plume, G. M. Gunyaev, V. A. Yartsev, and N. A. Belyaeva, “Properties of fiberglass plastics reinforced with high-modulus fibers,” Mech. Polym., 8, No. 1, 57-62 (1972).

    Google Scholar 

  2. T. Hayashi, K. Koyama, A. Yamazaki, and M. Kihira, “Development of new material properties by hybrid composition,” Fukugo Zairyo (Compos. Mater.), 1, No. 1, 21-25 (1972).

    Google Scholar 

  3. A. R. Bunsell and B. Harris, “Hybrid carbon and glass fibre composites,” Composites, 5, No. 4, 157-164 (1974).

    Google Scholar 

  4. C. Zweben, “Tensile strength of hybrid composites,” J. Mater. Sci., No. 12, 1325-1337 (1977).

    Google Scholar 

  5. G. M. Gunyaev, “Polycomponent high-modulus composites,” Mech. Polym., 13, No. 5, 685-692 (1977).

    Google Scholar 

  6. C. C. Chamis and R. F. Lark, “Non-metallic hybrid composites: analysis, design, application and fabrication,” in: W. J. Renton (ed.), Hybrid and Select Metal Matrix Composites, Amer. Inst. Aeronaut. Astronaut., New York (1977), pp. 13-51.

    Google Scholar 

  7. R. D. Maksimov and E. Z. Plume, “Elasticity of a hybrid composite material derived from aramid and boron fibers,” Mech. Compos. Mater., 16, No. 3, 279-283 (1980).

    Google Scholar 

  8. R. D. Maksimov, E. Z. Plume, and V. M. Ponomarev, “Elasticity characteristics of unidirectionally reinforced hybrid composites,” Mech. Compos. Mater., 19, No. 1, 9-15 (1983).

    Google Scholar 

  9. R. D. Maksimov, E. Z. Plume, and V. M. Ponomarev, “Strength properties of unidirectionally reinforced hybrid composites,” Mech. Compos. Mater., 20, No. 1, 29-35 (1984).

    Google Scholar 

  10. R. D. Maksimov and V. M. Ponomarev, “Determination of the damage to a hybrid composite resulting from the action of mechanical loads,” Mech. Compos. Mater., 18, No. 1, 100-104 (1982).

    Google Scholar 

  11. R. D. Maksimov and V. A. Kochetkov, “Description of the deformation of a hybrid composite with allowance for the effect of fiber fracture,” Mech. Compos. Mater., 18, No. 2, 157-162 (1982).

    Google Scholar 

  12. V. A. Kochetkov and R. D. Maksimov, “Predicting the creep of a unidirectional hybrid composite with allowance for the effect of fiber breakage,” Mech. Compos. Mater., 19, No. 5, 668-677 1983).

    Google Scholar 

  13. M. G. Bader and A. M. Priest, “Statistical aspects of fiber and bundle strength in hybrid composites,” in: Proc. Fourth Int. Conf. Compos. Mater., ICCM-IV. Vol. 2. Progress in Science and Engineering of Composites, Japan Soc. Compos. Mater., Tokyo (1982), pp. 1129-1144.

    Google Scholar 

  14. H. Fukuda, “An advanced theory of the strength of hybrid composites,” J. Mater. Sci., 19, 974-982 (1984).

    Google Scholar 

  15. Yu. Gutans and V. P. Tamuzh, “Probability analysis of the fracture of unidirectional hybrid composites in tension,” Mech. Compos. Mater., 22, No. 3, 324-331 (1986).

    Google Scholar 

  16. V. I. Vyshvanyuk, V. T. Alymov, and R. A. Turusov, “Thermal expansion of unidirectional hybrid composite materials with a low linear thermal expansion coefficient,” Mekh. Kompoz. Mater., No. 2, 357-360 (1985).

    Google Scholar 

  17. V. A. Kochetkov, R. D. Maksimov, and V. M. Ponomarev, “Thermal deformation of unidirectionally reinforced hybrid composites. Report No. 1,” Mech. Compos. Mater., 25, No. 2, 166-173 (1989).

    Google Scholar 

  18. V. A. Kochetkov and R. D. Maksimov, “Thermal deformation of unidirectionally reinforced hybrid composites. Report No. 2,” Mech. Compos. Mater., 25, No. 6, 690-699 (1989).

    Google Scholar 

  19. R. D. Maksimov and V. A. Kochetkov, “Thermal deformation prediction of hybrid composites with viscoelastic components,” Sci. Eng. Compos. Mater., 1, No. 4, 117-127 (1989).

    Google Scholar 

  20. V. A. Kochetkov and R. D. Maksimov, “Prediction of deformative and thermal properties of hybrid fiber composites with polymer matrix,” Acta Polymerica, 45, No. 5, 348-354 (1994).

    Google Scholar 

  21. V. A. Kochetkov and R. D. Maksimov, “Multifiber polymer composites: prediction of deformation and thermophysical properties,” Mech. Compos. Mater., 30, No. 3, 210-221 (1994).

    Google Scholar 

  22. C. Zweben and J. C. Norman, “Kevlar-49/T-300 hybrid fabric composites for aerospace applications,” SAMPE Quart. (July 1976).

  23. L. Machielse, D. Slager, and C. Vernooy, “Development, production, calculation and testing of a carbon/Kevlar fiber reinforced flap,” in: Proc. Third Int. Conf. Compos. Mater., ICCM-3. Vol. 2. Advances in Composite Materials, Pergamon Press, Paris (1980), pp. 1408-1423.

    Google Scholar 

  24. H. Nemoto, “Hybrid composite application to the Boeing 767 wing/body fairing,” in: Proc. Fourth Int. Conf. Compos. Mater., ICCM-IV. Vol. 2. Progress in Science and Engineering of Composites, Japan Soc. Compos. Mater., Tokyo (1982), pp. 1177-1184.

    Google Scholar 

  25. V. I. Afanasenko, Yu. A. Afanas'ev, A. G. Glushenko, V. I. Kotlov, I. I. Sokolova, and S. R. Tabaldyev, “Hybrid composite material of the supporting truss of a space telescope,” Mech. Compos. Mater., 24, No. 4, 544-552 (1988).

    Google Scholar 

  26. H. Budelmann and F. S. Rostasy, “Creep rupture behavior of FRP elements for prestressed concrete — phenomenon, results, and forecast models,” in: Proc. ASI Int. Symp. FRP Reinforcement for Concrete Structures, SP138-6, Vancouver, Canada (1993), pp. 87-100.

  27. V. Tamuzh and R. Tepfers, “Ductility of non-metallic hybrid fiber composite reinforcement for concrete,” in: L. Taerwe (ed.), Proc. 2nd Int. RILEM Symp. (FRPRCS-2), Non-Metallic (FRP) Reinforcement for Concrete Structures, Ghent, Belgium (1995), pp. 18-25.

  28. R. Tepfers, V. Tamuzh, R. Apinis, U. Vilks, and J. Modniks, “Ductility of nonmetallic hybrid fiber composite reinforcement for concrete,” Mech. Compos. Mater., 32, No. 2, 113-121 (1996).

    Google Scholar 

  29. W. Comboonsong, F. K. Ko, and H. G. Harris, “Ductile hybrid fiber reinforced plastic (FRP) rebar for concrete structures: Design methodology,” ACI Mater. J., 95, No. 6 (1998).

  30. H. G. Harris, W. Comboonsong, and F. K. Ko, “A new ductile hybrid fiber reinforced polymer (FRP) reinforcing bar for concrete structures,” ASCE J. Compos. Constr., Dept. Civil Eng. and Eng. Mech., University of Arizona, Tucson, Arizona, II, 66-99 (1998).

    Google Scholar 

  31. F. P. Hampton, F. K. Ko, and H. G. Harris, “Creep, stress rupture, and behavior of a ductile hybrid fiber reinforced polymer (D-H-FRP) for concrete structures,” in: Proc. 12th Int. Conf. Compos. Mater., ICCM-12, Paper No. 1364, Paris, France (1999) (on CD).

  32. V. V. Moskvitin, Resistance of Viscoelastic Materials [in Russian], Nauka, Moscow (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimov, R.D., Plume, E. Long-Term Creep of Hybrid Aramid/Glass-Fiber-Reinforced Plastics. Mechanics of Composite Materials 37, 271–280 (2001). https://doi.org/10.1023/A:1012313717631

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012313717631

Navigation