Skip to main content

Isolation of a Homodimeric Lectin with Antifungal and Antiviral Activities from Red Kidney Bean (Phaseolus vulgaris) Seeds

Abstract

A homodimeric lectin adsorbed on Affi-gel blue gel and CM-Sepharose and possessing a molecular weight of 67 kDa was isolated from red kidney beans. The hemagglutinating activity of this lectin was inhibited by glycoproteins but not by simple sugars. The lectin manifested inhibitory activity on human immunodeficiency virus-1 reverse transcriptase and α-glucosidase. The N-terminal sequence of the lectin exhibited some differences from previously reported lectins from Phaseolus vulgaris but showed some similarity to chitinases. It exerted a suppressive effect on growth of the fungal species Fusarium oxysporum, Coprinus comatus, and Rhizoctonia solani. The lectin had low ribonuclease and negligible translation-inhibitory activities.

This is a preview of subscription content, access via your institution.

REFERENCES

  • Balzarini, J., Neytes, J., Schols, D., Hosoya, M., Van Damme, E., Peumans, W., and de Clercq, E. (1992). Antiviral Res. 18, 191–207.

    Google Scholar 

  • Benhamou, N., Broglie, K., Broglie, R., and Chet, I. (1993). Can.J. Microbiol. 39, 318–328.

    Google Scholar 

  • Broekaert, W. F., Van Parijs, J., Leyns, F., Joos, H., and Peumans, W. (1989). Science 245, 1100–1102.

    Google Scholar 

  • Collins, R. A., Ng, T. B., Fong, W. P., Wan, C. C., and Yeung, H. W. (1997a). Life Sci. 61, 933–949.

    Google Scholar 

  • Collins, R. A., Ng, T. B., Fong, W. P., Wan, C. C., and Yeung, H. W. (1997b). Biochem.Mol.Biol.Int. 42, 1163–1169.

    Google Scholar 

  • Del Campillo, E. and Lewis, L. N. (1992). Plant Physiol. 98, 955–961.

    Google Scholar 

  • Dong, T. X., Ng, T. B., Wong, R. N. S., Yeung, H. W., and Xu, G. J. (1993). Int.J.Biochem. 25, 415–419.

    Google Scholar 

  • Eden, L., Heslinga, L., Klok, R., Ledeboer, A. M., Maat, J., Tooene, M. Y., Visser, C., and Verrips, C. (1982). Gene 18, 1–2.

    Google Scholar 

  • Endo, Y. and Tsurugi, K. (1987). J.Biol.Chem. 262, 8128–8130.

    Google Scholar 

  • Fabre, C., Causse, H., Mourey, L., Konin, K. J., Riviere, M., Hendriks, H., Puzo, G., Samama, J. P., and Rouge, P. (1998). Biochem.J. 329, 551–560.

    Google Scholar 

  • Goossens, A., Geremia, R., Bauw, G., Van Montagu, M., and Angenon, G. (1994). Eur.J.Biochem. 225, 787–795.

    Google Scholar 

  • Gozia, R., Ciopraga, O., Bentia, J., Lungu, T., Zamfirescu, M., Tudor, I., Roseanu, R., and Nitu, F. (1995). FEBS Lett. 370, 245–249.

    Google Scholar 

  • Graham, J. S., Burkhart, W., Xiong, J., and Gillikin, J. W. (1992) Plant Physiol. 98, 163–165.

    Google Scholar 

  • Hanselle, T. (1998). Thesis, Institute for Biochemistry and Biotechnology of Plants, Westfälische Wilhelms-Universität Münster, Germany.

    Google Scholar 

  • Kamemura, K., Furuichi, Y., Umekawa, H., and Takahashi, H. C. (1993). Biochim.Biophys.Acta 1158, 181–188.

    Google Scholar 

  • Laemmli, U. K. and Favre, M. (1973). J.Mol.Biol. 80, 575–599.

    Google Scholar 

  • Lam, Y. H., Wong, Y. S., Wang, B., Wong, R. N. S., Yeung, H. W., and Shaw, P. C. (1986). Plant Science 114, 111–117.

    Google Scholar 

  • Leah, R., Tommerup, H., Svendsen, I., and Mundy, J. (1991). J.Biol. Chem. 246, 1564–1573.

    Google Scholar 

  • Le Berre-Anton, V., Bompard-Gilles, C., Payan, F., and Rouge, P. (1997). Biochim.Biophys.Acta 1343, 31–40.

    Google Scholar 

  • Matsumoto, I. and Osawa, T. (1972). Biochem.Biophys.Res.Commun. 46, 1810–1815.

    Google Scholar 

  • McGrath, M. S., Hwang, K. M., Caldwell, S. E., Gaston, I., Luk, K. C., Wu, P., Ng, V. L., Crowe, S., Daniels, J., Marsh, J., Deinhart, T., Cekas, P. V., Uemari, J. C., Yeung, H. W., and Lifson, J. F. (1989). Proc.Natl.Acad.Sci.USA 86, 2844–2848.

    Google Scholar 

  • Mock, J. W. Y., Ng, T. B., Wong, R. N. S., Yao, Q. Z., Yeung, H. W., and Fong, W. P. (1996). Life Sci. 59, 1855–1859.

    Google Scholar 

  • Nakaguchi, T., Arakawa, T., Philo, J. S., Wen, J., Ishimoto, M., and Yamaguchi, H. (1997). J.Biochem. 121, 350–354.

    Google Scholar 

  • Ng, T. B., Chan, W. Y., and Yeung, H. W. (1992). Gen.Pharmacol. 23, 575–590.

    Google Scholar 

  • Pelham, R. B. and Jackson, R. J. (1976). Eur.J.Biochem. 67, 247–256.

    Google Scholar 

  • Sela, B. A., Lis, H., Shason, N., and Sachs, L. (1973). Biochim.Biophys. Acta 310, 273–277.

    Google Scholar 

  • She, Q. B., Ng, T. B., and Liu, W. K. (1998). Biochem.Biophys.Res. Commun. 247, 106–111.

    Google Scholar 

  • Tsao, S. W., Ng, T. B., and Yeung, H. W. (1990). Toxicon 28, 1183–1192.

    Google Scholar 

  • Verheyden, R., Pletinckx, P., Maes, J., Pepermans, D., Wyns, H. A. M., Willem, L., and Martins, J. C. (1993). C.R.Acad.Sci.Ser.III 316, 788–792.

    Google Scholar 

  • Vogelsang, R. and Barz, W. (1993). Planta 189, 60–69.

    Google Scholar 

  • Wang, H. X., Ng, T. B., Liu, W. K., Ooi, V. E. C., and Chang, S. T. (1995). Int.J.Peptide Protein Res. 46, 508–513.

    Google Scholar 

  • Ye, X. Y., Wang, H. X., and Ng, T. B. (1999). Biochem.Biophys.Res. Commun. 263, 130–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ye, X.Y., Ng, T.B., Tsang, P.W.K. et al. Isolation of a Homodimeric Lectin with Antifungal and Antiviral Activities from Red Kidney Bean (Phaseolus vulgaris) Seeds. J Protein Chem 20, 367–375 (2001). https://doi.org/10.1023/A:1012276619686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012276619686

  • Lectin
  • red kidney beans
  • antifungal
  • antiviral