Skip to main content
Log in

An efficient method for estimating from sparse data the parameters of the impact energy variation in the ductile-brittle transition region

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

An efficient method is proposed for estimating from sparse data the parameters of the systematic variation of the Charpy impact energy in the ductile-brittle transition region of low-carbon weld steels. The parameter estimates are practically unbiased and with a very good precision even in the case of very large scatter of the absorbed impact energy. Furthermore, the parameter estimates determining the shape of the transition curve are not affected by its location along the temperature axis. The method is robust regarding the temperature corresponding to a specified impact energy level. Thus, for different type of scatter of the impact toughness and different lengths of the scatter intervals, the estimates of the temperature corresponding to a specified impact energy vary in narrow limits. The transition temperature corresponding to a specified impact energy level is estimated with a very good precision, which is important for quantifying the deterioration of properties due to embrittlement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akselsen, O.M. and Grong, Ø (1992). Prediction of weld metal Charpy V-notch toughness. Materials Science and Engineering A159, 187–192.

    Google Scholar 

  • Avrami, M. (1940). Kinetics of phase change.II: Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212–224.

    Google Scholar 

  • Barlow, R.J. (1996). Statistics, Wiley and Sons, New York.

    Google Scholar 

  • DeGroot, M.H. (1986). Probability and Statistics 2nd ed., Addison-Wesley.

  • Downing, D.J., Haggag, F.M. and Nanstad, R.K. (1990). Estimating Charpy transition temperature shift using Weibull analysis. International Journal of Pressure Vessels and Piping,44, 241–254.

    Google Scholar 

  • Draper, N.R. and Smith, H. (1981). Applied Regression Analysis, 2nd ed., John Wiley and Sons, New York.

    Google Scholar 

  • Johnson, W.A. and Mehl, R.F. (1939). Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. Metall. Engrs 135, 416–458.

    Google Scholar 

  • Koistinen, D.P. and Marburger, R.E. (1959). A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metallurgica 7, 59–60.

    Google Scholar 

  • Kolmogorov, A.N. (1937). Statistical theory of crystallization of metals. Bull. Acad. Sci. USSR Mat. Sci. 1, 355–359.

    Google Scholar 

  • Moskovic, R., Windle, P.L. and Smith, A.F. (1997). Modelling Charpy impact energy property changes using a Bayesian method. Metallurgical and Materials Transactions A28, 111–113.

    Google Scholar 

  • Neter, J., Kutner, M.H., Nachtsheim, C.J. and Wasserman, W. (1996). Applied Linear Regression Models, 3rd ed. McGraw-Hill, New York.

    Google Scholar 

  • Oldfield, W. (1975). Curve fitting impact data. ASTM Standardisation News 24–29.

  • Seber, G.A.F. (1997). Linear regression analysis, John Wiley and Sons, New York.

    Google Scholar 

  • Stephens, D.A., Smith, A.F.M. and Moskovic, R. (1997). Charpy impact energy data: a Markov chain Monte Carlo analysis. Applied Statistics 46, 477–492.

    Google Scholar 

  • Todinov, M.T. (1999). Fitting impact fracture toughness data in the transition region. Materials Science and Engineering A265, 1–6.

    Google Scholar 

  • Todinov, M.T., Novovic, M., Bowen, P. and Knott, J.F. (2000). Modelling the impact energy in the ductile-brittle transition region of C-Mn multi-run welds. Materials Science & Engineering A A287, 116–124.

    Google Scholar 

  • Todinov, M.T. (2000). On some limitations of the Johnson–Mehl–Avrami–Kolmogorov equation. Acta Materialia 48, 4217–4224.

    Google Scholar 

  • Windle, P.L., Moskovic, R. and Crowder, M.J. (1996). A statistical model for the analysis and prediction of the effect of neutron irradiation on Charpy impact energy curves. Nuclear Engineering Design 165, 43–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todinov, M. An efficient method for estimating from sparse data the parameters of the impact energy variation in the ductile-brittle transition region. International Journal of Fracture 111, 131–150 (2001). https://doi.org/10.1023/A:1012212610024

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012212610024

Navigation