Skip to main content
Log in

Comparison of CYP3A Activities in a Subclone of Caco-2 Cells (TC7) and Human Intestine

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To compare the activity of the CYP3A enzyme expressed by TC7, a cell culture model of the intestinal epithelial cell, to the activity of human intestinal CYP3A4, using terfenadine as a substrate.

Methods. The metabolism of terfenadine was investigated in intact cells and microsomal preparations from TC7, human intestine, and liver. The effect of two CYP3A inhibitors, ketoconazole and troleandomycin (TAO), on the metabolism of terfenadine was also examined.

Results. Only hydroxy-terfenadine was detected in TC7 microsomal incubations. In contrast, azacyclonol and hydroxy-terfenadine were detected in human intestinal and hepatic microsomal incubations. The Km values for hydroxy-terfenadine formation in TC7 cells, intestine and liver microsomes were 1.91, 2.5, and 1.8, μM respectively. The corresponding Vmax values were 2.11, 61.0, and 370 pmol/min/mg protein. Km values for azacyclonol in intestinal and hepatic samples were 1.44 and 0.82 μM and the corresponding Vmax values were 14 and 60 pmol/min/mg protein. The formation of hydroxy-terfenadine was inhibited by ketoconazole and TAO in human intestine and TC7 cell microsomes. The Km and Vmax values for terfenadine metabolism in intact TC7 cells were similar to those from TC7 cell microsomes.

Conclusions. Our results indicate that TC7 cells are a potentially useful alternative model for studies of CYP3A mediated drug metabolism. The CYP3A expressed by TC7 cells is not CYP3A4, but probably CYP3A5, making this cell line suitable for studies of colonic drug transport and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. C. Kolars, W. M. Awni, R. M. Merion, and P. B. Watkins. The Lancet 338:1488–1490 (1991).

    Google Scholar 

  2. W. A. Mahon, T. Inaba, and R. M. Stone. Clin. Pharmacol Ther. 22:228–233 (1977).

    Google Scholar 

  3. L. S. Kaminsky and M. J. Fasco. Toxicology 21:407–422 (1992).

    Google Scholar 

  4. J. C. Kolars, P. Schmiedlin-Ren, J. D. Schuetz, C. Fang, and P. B. Watkins. J. Clin. Invest. 90:1871–1878 (1992).

    Google Scholar 

  5. P. B. Watkins, S. A. Wrighton, E. G. Schuetz, D. T. Molowa, and P. S. Guzelian. J. Clin. Invest. 80:1029–1036 (1987).

    Google Scholar 

  6. L. Gervot, V. Carriere, P. Costet, P. Cugenenc, A. Berger, P. H. Beaune, and I. de Waziers. Env. Toxicol. Pharmacol. 2:381–388 (1996).

    Google Scholar 

  7. I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Gastroenterology 96:736–49 (1989).

    Google Scholar 

  8. K. L. Audus, R. L. Bartel, I. J. Hidalgo, and R. T. Borchardt. Pharm. Res. 7:435–451 (1990).

    Google Scholar 

  9. P. Artursson. Crit. Rev. Ther. Drug Carrier System 8:305–330 (1991).

    Google Scholar 

  10. A. Baranczyk-Kuzma, J. A. Garren, I. J. Hidalgo, and R. T. Borchardt. Life Sci. 49:1197–1206 (1991).

    Google Scholar 

  11. W. H. M. Peters and H. M. J. Roelofs. Cancer Res. 52:1886–1890 (1992).

    Google Scholar 

  12. X. Boulenc, M. Bourrie, I. Fabre, C. Roque, H. Joyeux, Y. Berger, and G. J. Fabre. J. Pharmacol Exper. Ther. 263:1471–1478 (1992).

    Google Scholar 

  13. V. Carriere, T. Lesuffleur, A. Barbat, M. Rousset, E. Dussaulx, P. Costet, I. Wazier, P. Beasune, and A. Zweibaum. FEBS Lett. 355:247–250 (1994).

    Google Scholar 

  14. C.-H. Yun, R. A. Okerholm, and F. P. Guengerich. Drug Metab. Disp. 21:403–409 (1993).

    Google Scholar 

  15. M. Jurima-Romet, K. Crawford, T. Cyr, and T. Inaba. 22:849-857 (1994).

  16. A. D. Rodrigues, D. J. Mulford, R. D. Lee, B. W. Surber, M. J. Kukuka, J. L. Ferrero, S. B. Thomas, M. S. Shet, and R. W. Estabrook. Drug Metabo. Disp. 23:765–409 (1995).

    Google Scholar 

  17. K.-H. Ling, G. A. Leeson, S. D. Burmaster, R. H. Hook, M. K. Reith, and L. K. Cheng. Drug Metab. Disp. 23:631–636 (1995).

    Google Scholar 

  18. T. Aoyama, S. Yamano, D. J. Waxman, D. P. Lapenson, U. A. Meyer, V. Fischer, R. Tyndale, T. Inaba, W. Kalow, H. V. Gelboin, and F. J. Gonzalez. J. Biol. Chem. 264:97–105 (1989).

    Google Scholar 

  19. S. A. Wrighton, B. J. Ring, P. B. Watkins, and M. VandenBranden. Mol. Pharmacol. 38:3147–3155 (1989).

    Google Scholar 

  20. S. A. Wrighton, W. R. Brian, M.-A. Sari, M. Iwasaki, F. P. Guengerich, J. L. Raucy, D. T. Malowa, and M. VandenBranden. Mol. Pharmacol. 38:207–213 (1990).

    Google Scholar 

  21. J. C. Gorski, S. D. Hall, D. R. Jones, M. VandenBranden, and S. A. Wrighton. Biochem. Pharmacol. 47:1643–1653 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael J. Hidalgo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raeissi, S.D., Guo, Z., Dobson, G.L. et al. Comparison of CYP3A Activities in a Subclone of Caco-2 Cells (TC7) and Human Intestine. Pharm Res 14, 1019–1025 (1997). https://doi.org/10.1023/A:1012197110917

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012197110917

Navigation