Skip to main content
Log in

The Design and Validation of a Novel Intravenous Microdialysis Probe: Application to Fluconazole Pharmacokinetics in the Freely-Moving Rat Model

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this study was to design and validate a concentric, flexible intravenous microdialysis probe to determine drug concentrations in blood from the inferior vena cava of a freely-moving animal model.

Methods. An intravenous microdialysis probe was constructed using fused-silica tubing and an acrylonitrile/sodium methallyl sulfonate copolymer hollow fiber. The probe was tested in vitro for the recovery of fluconazole and UK-54,373, a fluconazole analog used for probe calibration by retrodialysis. Subsequent in vivo validation was done in rats (n = 7) that had a microdialysis probe inserted into the inferior vena cava via the femoral vein, and the femoral artery was cannulated for simultaneous blood sampling. Comparisons of fluconazole pharmacokinetic parameters resulting from the two sampling methods were performed at 2 and 10 days after probe implantation.

Results. There were no statistical differences between the microdialysis sampling and conventional blood sampling methods for the T1/2, Cl, Vdss, and dose-normalized AUC by paired t-test (p > 0.05) for repeated dosing at day 2 and day 10 after probe placement. The probe recovery, as determined by retrodialysis, significantly decreased over the ten day period. This finding indicates the necessity for frequent recovery determinations during a long-term blood microdialysis experiment.

Conclusions. These results show that microdialysis sampling in the inferior vena cava using this unique and robust probe design provides an accurate method of determining blood pharmacokinetics in the freely-moving rat for extended experimental periods. The probe design allows for a simple surgical placement into the inferior vena cava which results in a more stable animal preparation for long-term sampling and repeated-measures experimental designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. O. Scott, L. R. Sorensen, and C. E. Lunte. J. Chromatography 506:461-469 (1990).

    Google Scholar 

  2. P. Lonnroth, J. Carlsten, L. Johnson, and U. Smith. J. Chromatography 568:419-425 (1991).

    Google Scholar 

  3. U. Ungerstedt. J. Int. Med. 230:365-373 (1991).

    Google Scholar 

  4. H. Benveniste and P. C. Huttemeier. Prog. Neurobiol. 33:195-215 (1990).

    Google Scholar 

  5. M. Telting-Diaz, D. O. Scott, and C. E. Lunte. Anal. Chem. 64:806-810 (1992).

    PubMed  Google Scholar 

  6. F. Rada, M. Parada, and L. Hernandez. J. Appl. Physiol. 74:466-469 (1993).

    PubMed  Google Scholar 

  7. P. A. Evrard, G. Deridder, and R. K. Verbeeck. Pharm. Res. 13:12-17 (1996).

    PubMed  Google Scholar 

  8. F. J. Flores-Murrieta, V. Granados-Soto, and E. Hong. J. Liquid Chromatogr. 17:3803-3811 (1994).

    Google Scholar 

  9. C. M. Ervine and J. B. Houston. Pharm. Res. 11:961-965 (1994).

    PubMed  Google Scholar 

  10. H. Yang, Q. Wang, and W. F. Elmquist. Pharm. Res. 13:1570-1575 (1996).

    PubMed  Google Scholar 

  11. M. J. Humphrey, S. Jevons, and M. H. Tarbit. Antimicrob. Agents and Chemother. 28:648-653 (1985).

    Google Scholar 

  12. K. C. Yeh and K. C. Kwen. J. Pharmacokinet. Biopharm. 6:79-98 (1978).

    PubMed  Google Scholar 

  13. Y. Wang, S. L. Wong, and R. J. Sawchuk. Pharm. Res. 10:1411-1419 (1993).

    PubMed  Google Scholar 

  14. R. A. Yokel, D. D. Allen, D. E. Burgio, and P. J. McNamara. J. Pharmacol. Toxicol. Meth. 27:135-142 (1992).

    Google Scholar 

  15. L. Stahle, S. Segersvard, and U. Ungerstedt. J. Pharmacol. Meth. 25:41-52 (1991).

    Google Scholar 

  16. T. Terasaki, Y. Deguchi, Y. Kasama, W. M. Pardridge, and A. Tsuji. Int. J. Pharm. 81:143-152 (1992).

    Google Scholar 

  17. H. V. Baeyer, A. Lajous-Patter, W. Debrandt, H. Hampl, F. Kochinke, and R. Herbst. J. Membrane Sci. 36:215-229 (1988).

    Google Scholar 

  18. L. J. Langsdorf, L. G. Krankel, and A. L. Zydney. ASAIO Journal 39:M767-M772 (1993).

    PubMed  Google Scholar 

  19. Z. Yu and F. L. S. Tse. Biopharm. and Drug Disposition 16:37-58 (1995).

    Google Scholar 

  20. A. Chen and C. E. Lunte. J. Chromatogr. 691:29-35 (1995).

    Google Scholar 

  21. K. M. Steele and C. E. Lunte. J. Pharm. Biomed. Anal. 13:149-154 (1995).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Wang, Q. & Elmquist, W.F. The Design and Validation of a Novel Intravenous Microdialysis Probe: Application to Fluconazole Pharmacokinetics in the Freely-Moving Rat Model. Pharm Res 14, 1455–1460 (1997). https://doi.org/10.1023/A:1012137209042

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012137209042

Navigation