Skip to main content
Log in

Determination of Extent of Formaldehyde-Induced Crosslinking in Hard Gelatin Capsules by Near-Infrared Spectrophotometry

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To predict the degree of crosslinking from formaldehyde-stressed hard gelatin capsules (HGCs) using near-infrared spectrophotometry (NIR).

Methods. HGCs were exposed to a 150 ppb atmosphere of formaldehyde for 2.25,4.60,9.42, 16.0 and 24.0 hours. The capsules were filled with fresh amoxicillin, placed in a 90° conical reflector cone, and scanned in a NIR spectrophotometer. Principal component regression (PCR) was employed to analyze the spectra of the intact capsules. Dissolution profiles were then obtained for each experimental group.

Results. The dissolution of amoxicillin from the capsules at pH 1.2 was found to decrease with increasing time of exposure to the formaldehyde atmosphere. A set of principal components (PCs) was formed by a linear combination of the absorbance values at each wavelength scanned. A good correlation was established (r2 = 0.963) when PC values from the NIR spectra of the HGCs were regressed against percentage of amoxicillin dissolved at 45 minutes, at pH 1.2. Water content of the capsules was found to be the largest determinant in the variation between HGC spectra at each exposure time.

Conclusions. NIR spectrophotometry, combined with PCR, was successful at not only predicting dissolution of HGCs exposed to formaldehyde, but also at determining which wavelengths contributed most to spectral variation of these stressed HGCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. A. Digenis, T. B. Gold, and V. P. Shah. J. Pharm. Sci. 83:915–921 (1994).

    Google Scholar 

  2. B. E. Jones. In Hard Capsules-Development and Technology; K. Ridgway, (ed.), The Pharmaceutical Press, London, 1987, pp. 1–12.

    Google Scholar 

  3. B. T. Palerno and S. C. McMillion. U.S. Patent 2 578 943, 1951.

  4. E. A. Swinyard and W. Lowenthal. In Remington's Pharmaceutical Sciences, 18th edition; A. R. Gennaro, (ed.), Mack, Eaton, Pennsylvania, 1990, p. 1306.

    Google Scholar 

  5. G. A. Digenis and T. B. Gold. Pharm. Res. 11:S146, PT 6064 (1994).

    Google Scholar 

  6. E. Doelker and A. C. Vial-Bernasconi. S. T. P. Pharma. 4:298–306 (1988).

    Google Scholar 

  7. H. Mohamad, R. Renoux, S. Aiache, and J.-M. Aiache. S. T. P. Pharma. 2:531–535 (1986).

    Google Scholar 

  8. H. Mohamad, R. Renoux, S. Aiache, J.-M. Aiache, and J.-P. Kantelip. S. T. P. Pharma. 2:630–635 (1986).

    Google Scholar 

  9. H. Mohamad, J.-M. Aiache, R. Renoux, P. Mougin, and J.-P. Kantelip. S. T. P. Pharma. 3:407–411 (1987).

    Google Scholar 

  10. A. Martin. In Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 9th edition, Jaime N. Delgado and W. A. Remers, Eds., J. B. Lippincott Co., New York, 1991, p 157.

    Google Scholar 

  11. T. B. Gold, S. L. Smith, and G. A. Digenis. Pharm. Dev. Tech. 1:21–26 (1996).

    Google Scholar 

  12. S. K. Taylor, F. Davidson, and D. W. Ovenall. Photogr. Sci. Eng. 22:134–138 (1978).

    Google Scholar 

  13. K. Albert, B. Peters, E. Bayer, U. Treiber, and M. Zwilling. Z. Naturforsch. 41b:351–358 (1986).

    Google Scholar 

  14. K. Albert, E. Bayer, A. Worsching, and H. Vogele. Z. Naturforsch. 46b:385–389 (1991).

    Google Scholar 

  15. M. S. Kamat, R. A. Lodder, and P. P. DeLuca. Pharm. Res. 6:961–965 (1989).

    Google Scholar 

  16. R. G. Buice, Jr., T. B. Gold, R. A. Lodder, and G. A. Digenis. Pharm. Res. 12:161–163 (1995).

    Google Scholar 

  17. R. A. Lodder, M. Selby, and G. M. Hieftje. Anal. Chem. 59:1921–1930 (1987).

    Google Scholar 

  18. R. A. Lodder and G. M. Hieftje. Appl. Spectrosc. 42:556–558 (1988).

    Google Scholar 

  19. J. K. Drennen and R. A. Lodder. J. Pharm. Sci. 79:622–627 (1990).

    Google Scholar 

  20. S. Belman. Anal. Chim. Acta. 29:120–126 (1963).

    Google Scholar 

  21. J. W. G. Smith, G. E. de Grey, and V. J. Patel. Analyst 92:247–252 (1967).

    Google Scholar 

  22. Carstensen, J. T. and Rhodes, C. R. Drug Dev. Ind. Pharm. 19:1811–1814 (1993).

    Google Scholar 

  23. Chavetz, L., Hong, W-H., Tsilifonis, D. C., Taylor, A. K., and Philip, J. J. Pharm. Sci. 73:1186–1187 (1984).

    Google Scholar 

  24. J. E. Jackson. A User's Guide to Principal Components, John Wiley & Sons, Inc., New York, 1991, pp. 3–30.

    Google Scholar 

  25. R. G. Buice, Jr., T. B. Gold, R. A. Lodder, and G. A. Digenis. Pharm. Res. 12:S36 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gold, T.B., Buice, R.G., Lodder, R.A. et al. Determination of Extent of Formaldehyde-Induced Crosslinking in Hard Gelatin Capsules by Near-Infrared Spectrophotometry. Pharm Res 14, 1046–1050 (1997). https://doi.org/10.1023/A:1012105412735

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012105412735

Navigation