Skip to main content
Log in

Prediction of Caffeine in Tablets Containing Acetylsalicylic Acid, Dipyrone, and Paracetamol by Near-Infrared Spectroscopy, Raman Scattering, and Partial Least Squares Regression

  • Published:
Journal of Applied Spectroscopy Aims and scope

Two chemometric models drawing on diffuse reflectance near-infrared spectroscopy and Raman scattering are proposed to predict caffeine content in tablets based on acetylsalicylic acid, dipyrone, and paracetamol contents. However, data mining from these analyses to create models generally requires a prior comparison between spectral data and the results from reference values obtained by analytical methodology. Therefore, the construction of a robust calibration model entails that both analytical methods are simultaneously employed on several samples, which represents a limiting factor for the widespread use of spectroscopy. In this case, grounded tablets of different brands, containing only the active principles acetylsalicylic acid, dipyrone, or paracetamol and their excipients, were doped with controlled amounts of pure caffeine ranging from 0 to 10%(w/w) and used as calibration samples. Thus, caffeine quantification with a reference method was not necessary. The prediction samples had at least one of the aforementioned active ingredients and caffeine in its original formulation. Hence, the %(w/w) values of caffeine used as reference for the prediction steps were calculated from the values described on the drug description leaflet and the tablet final mass. Partial least squares regression was used as a multivariate method to construct the models. The near-infrared and Raman prediction models for caffeine, using four latent variables, presented the respective values of 0.79 and 0.78 of root-mean-square errors of cross validation, 0.74 and 1.00 of root-mean-square errors of prediction, and 0.97 and 0.97 of correlation coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Temple, C. Bernard, S. E. Lipshultz, J. D. Czachor, J. A. Westphal, and M. A. Mestre, Front. Psy., 8, 1–19 (2017).

    Google Scholar 

  2. M. C. Cornelis, Nutrients, 11, 416–420 (2019).

    Article  Google Scholar 

  3. A. Shabir, A. Hooton, J. Tallis, and M. Higgins, Nutrients, 10, 1528 (2018).

    Article  Google Scholar 

  4. D. Wikoff, B. T. Welsh, R. Henderson, G. P. Brorby, J. Britt, E. Myers, J. Goldberger, H. R. Lieberman, C. O'Brien, J. Peck, M. Tenebein, C. Weaver, S. Harvey, J. Urban, and C. Doepker, Food Chem. Toxicol., 109, 585–648 (2017).

    Article  Google Scholar 

  5. A. Nehlig, J. Daval, and G. Debry, Brain Res. Rev., 17, 139–170 (1992).

    Article  Google Scholar 

  6. J. Sawynok, Pain, 152, 726–729 (2011).

    Article  Google Scholar 

  7. R. P. Heaney, Food Chem. Toxicol., 40, 1263–1270 (2002).

    Article  Google Scholar 

  8. A. R. Feinstein, L. Heinemann, D. Dalessio, J. M. Fox, J. Goldstein, G. Haag, D. Ladewig, and C. P. O'Brien, Clin. Pharmacol. Ther., 68, 457–467 (2000).

    Article  Google Scholar 

  9. H. R. V. Godoy, F. B. Gonçalves, and C. F. Moraes, Rev. Med. Saude, 1, 169–173 (2012).

    Google Scholar 

  10. V. A. Voicu, C. Mircioiu, C. Plesa, M. Jinga, V. Balaban, R. Sandulovici, A. M. Costache, V. Anuta, and I. Mircioiu, Front. Pharmacol., 10, 607 (2019).

    Article  Google Scholar 

  11. J. R. Scott, A. L. Hassett, C. M. Brummett, R. E. Harris, D. J. Clauw, and S. E. Harte, J. Pain Res., 10, 1801–1809 (2017).

    Article  Google Scholar 

  12. J. Cruz, M. Bautista, J. M. Amigo, and M. Blanco, Talanta, 80, 473–478 (2009).

    Article  Google Scholar 

  13. E. M. Aldred, Pharmacology, A Handbook for Complementary Healthcare Professionals, 41, 331–341 (2009).

    Google Scholar 

  14. F. A. C. Sanches, R. B. Abreua, M. J. C. Pontes, F. C. Leite, D. J. E. Costa, R. K. H. Galvão, and M. C. U. Araujo, Talanta, 92, 84–86 (2012).

    Article  Google Scholar 

  15. C. A. D. Melo, P. Silva, A. A. Gomes, D. D. S. Fernandes, G. Véras, and A. C. D. Medeiros, J. Braz. Chem. Soc., 24, 991–997 (2013).

    Google Scholar 

  16. M. I. Díaz-Reval, R. Galván-Orozco, F. J. López-Muñoz, and N. Carrillo-Munguía, Cir. Ciruj., 76, 241–246 (2008).

    Google Scholar 

  17. G. G. Graham, M. J. Davies, R. O. Day, and A. M. K. F. Scott, Inflammopharmacology, 21, 201–232 (2013).

  18. S. J. Peroutka, J. A. Lyon, J. Swarbrick, R. B. Lipton, and K. Kolodner, J. Goldstein, Headache, 44, 136–141 (2004).

    Article  Google Scholar 

  19. S. Diamond, T. K. Balm, and F. G. Freitag, Clin. Pharmacol. Ther., 68, 312–319 (2000).

    Article  Google Scholar 

  20. A. Polski, R. Kasperek, K. Sobotka-Polska, and E. Poleszak, Curr. Issues Pharm. Med. Sci., 27, 10–13 (2014).

    Article  Google Scholar 

  21. http://portal.anvisa.gov.br/documents/3845226/0/Justifi cativa_Limites_Suplementos.pdf/e265ccd0-8361-4d8e-a33fce8b2ca69424.

  22. S. C. Escobar, L. R. Cubides, and C. P. Pérez, Indian J. Pharm. Sci., 79, 731–739 (2017).

    Article  Google Scholar 

  23. R. C. Lopez-Sanchez, V. J. Lara-Diaz, A. Aranda-Gutierrez, J. A. Martinez-Cardona, and J. A. Hernandez, J. Anal. Methods Chem., 2018, 1–11 (2018).

    Google Scholar 

  24. M. F. F. Lima, G. I. S. França, D. J. F. Souza, A. G. S. Cabral, and C. A. de Azevedo Filho, Braz. J. Health Rev., 2, 4600–4610 (2019).

    Article  Google Scholar 

  25. M. Jeszka-Skowron, A. Zgoła-Grzeskowiak, and T. Grzeskowiak, Eur. Food Res. Technol., 240, 19–31 (2015).

    Article  Google Scholar 

  26. M. C. Sarraguça, A. V. Cruz, S. O. Soares, H. R. Amaral, P. C. Costa, and J. A. Lopes, J. Pharm. Biomed. Anal., 52, 484–492 (2010).

    Article  Google Scholar 

  27. D. Melucci, D. Monti, M. D'Elia, and G. Luciano, J. Forensic Sci., 57, 86–92 (2012).

    Article  Google Scholar 

  28. Y. Sacré, F. Chavez, L. Netchacovicth, Ph. Hubert, and E. Ziemos, J. Pham. Biomed. Anal., 101, 123–140 (2014).

    Article  Google Scholar 

  29. C. S. Silva, A. Braz, and M. F. Pimentel, J. Braz. Chem. Soc., 30, 2259–2290 (2019).

    Google Scholar 

  30. A. B. Eldin, O. A. Ismaiel, W. E. Hassan, and A. A. Shalaby, J. Anal. Chem., 71, 861–871 (2016).

    Google Scholar 

  31. M. Palo, K. Kogermann, N. Genina, D. Fors, J. Peltonen, J. Heinämäki, and N. Sandler, J. Drug Deliv. Sci. Technol., 34, 60–70 (2015).

    Google Scholar 

  32. D. M. Muntean, C. Alecu, and I. Tomuta, J. Spectrosc., 2017, 1–8 (2017).

    Article  Google Scholar 

  33. Y. Roggo, K. Degardina, and P. Margot, Talanta, 81, 988–995 (2010).

    Article  Google Scholar 

  34. N. M. Ralbovsky and I. K. Lednev, Spectrochim. Acta A, 219, 463–487 (2019).

    Article  ADS  Google Scholar 

  35. B. Nagy, A. Farkas, M. Gyurkes, S. Komaromy-Hiller, B. Demuth, B. Szabo, D. Nusser, E. Borbas, G. Marosi, and Z. Kristof, Int. J. Pharm., 530, 21–29 (2017).

    Article  Google Scholar 

  36. B. M. Wise, N. B. Gallagher, R. Bro, J. M. Shaver, W. Windig, and R. S. Koch, PLS_Toolbox 3.5, for Use with MatlabTM, Eigenvector Research (2004).

  37. A. Savitzky and M. J. E. Golay, Anal. Chem., 36, 1627–1679 (1964).

    Article  ADS  Google Scholar 

  38. R. G. Brereton, Applied Chemometrics for Scientists, John Wiley & Sons (2007).

  39. J. V. Roque, W. Cardoso, L. A. Peternelli, and R. F. Teófi lo, Anal. Chim. Acta, 1075, 57–70 (2019).

  40. J. S. Ribeiro, M. M. C. Ferreira, and T. J. G. Salva, Talanta, 83, 1352–1358 (2011).

    Article  Google Scholar 

  41. M. M. Said, S. Gibbons, A. C. Moffata, and M. Zloha, Int. J. Pharm., 415, 102–109 (2011).

    Article  Google Scholar 

  42. M. Blanco, R. Cueva-Mestanza, and A. Peguero, J. Pharm. Biomed. Anal., 51, 797–804 (2010).

    Article  Google Scholar 

  43. M. H. Ferreira, J. F. F. Gomes, and M. M. Sena, J. Braz. Chem. Soc., 20, 1680–1686 (2009).

    Google Scholar 

  44. E. Otsuka, H. Abe, and M. Aburada, Drug Dev. Ind. Pharm., 36, 839–844 (2010).

    Article  Google Scholar 

  45. I. Pavel, A. Szeghalmi, D. Moringnio, S. Cinta, and W. Kiefer, Biopolymers, 72, 25–37 (2003).

    Article  Google Scholar 

  46. H. G. M. Edwards, T. Munshi, and M. Anstis, Spectrochim. Acta A, 61, 1453–1459 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Ribeiro.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 4, pp. 594–602, July–August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guio, L.L.M., Coutinho, L.O., Cavalcante, V. et al. Prediction of Caffeine in Tablets Containing Acetylsalicylic Acid, Dipyrone, and Paracetamol by Near-Infrared Spectroscopy, Raman Scattering, and Partial Least Squares Regression. J Appl Spectrosc 88, 772–780 (2021). https://doi.org/10.1007/s10812-021-01239-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01239-8

Keywords

Navigation