Skip to main content
Log in

Study of Fe Addition on the Thermal Decomposition of Coprecipitated Oxalates for the Bi-based Superconductor Synthesis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work introduces results obtained during the preparation of a Bi-based material with superconducting properties by oxalate coprecipitation.

The influence of Fe presence on the precursors thermal stability and on the superconducting phases formation mechanism are presented. The thermal decomposition and the stability in air of FeC2O4×2H2O and also of the components mixture were studied by DTA/TG. It was evidenced that iron oxalate decomposes at the lowest temperature compared to the decomposition temperatures of the individual oxalates.

XRD, IR and TEM/ED studies were approached to investigate the individual oxalates and the mixture coprecipitates for the high-T c superconducting material synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. Metlin and Y. D. Tetryakov, J. Mater. Chem., 4 (1994) 1659.

    Article  CAS  Google Scholar 

  2. M. Kakihana, J. Sol-Gel Sci. Technol., 6 (1996) 7.

    Article  CAS  Google Scholar 

  3. H. Medelius and D. J. Rowcliffe, Mat. Sci. Eng., A109 (1989) 289.

    Google Scholar 

  4. G. Marbach, S. Stotz, M. Klee and J. W. C. de Vries, Phys. C, 161 (1989) 111.

    Article  CAS  Google Scholar 

  5. C. Y. Shei, R. S. Liu, C. T. Chang and P. T. Wu, Mat. Lett., 9 (1990) 105.

    Article  CAS  Google Scholar 

  6. N. D. Spencer, Chem. Mat., 2 (1990) 708.

    Article  CAS  Google Scholar 

  7. M. Mansori, P. Satre, C. Breandon, M. Roubin and A. Sebaouin, Ann. Chim. Fr., 18 (1993) 537.

    CAS  Google Scholar 

  8. Y. Zhang, M. Muhammed, L. Wang, J. Nogues and K. V. Rao, Mat. Chem. Phys., 30 (1992) 153.

    Article  CAS  Google Scholar 

  9. Y. Zhang, Z. Fang, M. Muhammed, K. V. Rao, V. Skumryev, H. Medelius and J. L. Costa, Phys. C, 157 (1989) 108.

    Article  CAS  Google Scholar 

  10. C. Chiang, C. Y. Shei, Y. T. Huang, W. H. Lee and P. T. Wu, Phys. C, 17 (1990) 383.

    Article  Google Scholar 

  11. L. Marta, M. Zaharescu, L. Ciontea and T. Petrisor, Appl. Supercond., 1 (1993) 677.

    Article  CAS  Google Scholar 

  12. M. Chuanbin, D. Zehua and Z. Lian, Sci. in China, E39 (1996) 181.

    Google Scholar 

  13. M. Popa, A. Totovana, L. Popescu, N. Dragan and M. Zaharescu, J. Eur. Ceram. Soc., 18 (1998) 1265.

    Article  CAS  Google Scholar 

  14. V. P. Danilov, O. N. Krasnobaeva, I. B. Kudinov, T. A. Nosova, V. M. Novotortsev and A. V. Filatov, Inorganic Mat., 30 (1994) 507.

    Google Scholar 

  15. L. Marta, O. Horovitz and M. Zaharescu, Key Eng. Mat. Vols 132.136, Trans. Tech. Publications, Switzerland 1997, p. 1239.

    Google Scholar 

  16. G. C. Nicholson, J. Inorg. Nucl. Chem., 29 (1967) 1599.

    Article  CAS  Google Scholar 

  17. U. Kozo, J. Chem. Soc. Jap., 6 (1975) 1968.

    Google Scholar 

  18. D. Broadbent, D. Dollimore and J. Dollimore, J. Chem. Soc., 3 (1967) 451.

    Google Scholar 

  19. V. Rao, A. L. Shashimohan and A. B. Biswas, J. Mat. Sci., 9 (1974) 430.

    Article  CAS  Google Scholar 

  20. A. Zuda, Thermochim. Acta, 8 (1974) 217.

    Article  CAS  Google Scholar 

  21. B. Boyanov, D. Khazdhiev and V. Vasilev, Thermochim. Acta, 93 (1985) 89.

    Article  CAS  Google Scholar 

  22. C. K. Hsu, J. S. Lee and C. W. Huang, J. Therm. Anal. Cal., 51 (1998) 295.

    CAS  Google Scholar 

  23. M. Popa, M. Zaharescu, L. Marta, L. Diamandescu and A. Totovana, Key Eng. Mat. Vols 132–136, Trans Tech Publications, Switzerland 1997, p. 1253.

    Google Scholar 

  24. M. Popa and M. Zaharescu, Rev. Roum Chim., 45 (2000) (in press).

  25. M. Zaharescu, L. Marta, M. Popa and D. Crisan, Proc. of the 8th CIMTEC World Ceramics Congress and Forum on New Materials, ed. P. Vincenzini, Techna, Faenza, 1995, p. 409.

    Google Scholar 

  26. B. Boyanov, D. Khadzhiev and V. Vasilev, Scientific Works of Plovdiv University ‘P. Hilendarsky’, Himija.

  27. M. Zaharescu, A. Braileanu, R. Manaila, V. Fruth and G. G. Tanase, Mat. Res. Bull., 27 (1992) 491.

    Article  CAS  Google Scholar 

  28. M. Zaharescu, A. Braileanu and D. Crisan, J. Thermal Anal., 40 (1993) 321.

    CAS  Google Scholar 

  29. E. G. Derouane, Z. Gabelice, R. Hubin and M. J. Hubin-Frankin, Thermochim. Acta, 11 (1975) 287.

    Article  CAS  Google Scholar 

  30. B. V. Strijkov, A. M. Lapitskii and L. G. Vlasov, Zh. Neorg. Khim., 7 (1962) 2352.

    Google Scholar 

  31. A. H. Verdonk, Thermal Analysis Vol. 2, Proc 3rd ICTA, Davos 1971, p. 651.

    Google Scholar 

  32. J. T. Yates and C. W. Garland, J. Phys. Chem., 65 (1961) 617.

    CAS  Google Scholar 

  33. L. Marta, M. Zaharescu and I. Haiduc, J. Thermal Anal., 41 (1994) 915.

    CAS  Google Scholar 

  34. V. P. Kormienko, Ukr. Chim. Zh., 23 (1957) 159.

    Google Scholar 

  35. P. Peshev, G. Gyurov, Y. Khristova, K. Petrov, D. Kovachvo, Y. Dimitriev, N. Nencheva and E. Evlakhor, Mater. Res. Bull., 23 (1988) 1765.

    Article  CAS  Google Scholar 

  36. C. Duval, Inorganic Thermogravimetric Analysis, Elsevier Publishing, London 1963, p. 330.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popa, M., Calderon-Moreno, J.M., Crisan, D. et al. Study of Fe Addition on the Thermal Decomposition of Coprecipitated Oxalates for the Bi-based Superconductor Synthesis. Journal of Thermal Analysis and Calorimetry 62, 633–645 (2000). https://doi.org/10.1023/A:1012009022027

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012009022027

Navigation