Skip to main content
Log in

Effect of Thermal Resistance of the Dielectric–Metal Contact on the Temperature Field in a Dielectric Exposed to Ion Beams

  • Published:
Russian Physics Journal Aims and scope

Abstract

Heating of MgO crystals exposed to repetitively pulsed ion beams is studied. A solution to the thermal-conductivity equation provides induced specimen-temperature variations about a mean with irradiation-pulse repetition rate. The average temperature during the variation period first increases and then saturates, approaching a quasi-stationary value <T>. The latter depends entirely on the thermal resistance of the specimen–substrate contact under fixed irradiation conditions. A rapid method for determining the thermal resistance of the contact is put forward. The approach is based on repetitive pulsed heating of the specimen by a moderate-density electron beam and on precision measurements of average temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. I. Guseva, Surface, No. 4, 27–50 (1982).

    Google Scholar 

  2. V. F. Pichugin, T. S. Frangulian, Yu. Yu. Kryuchkov, et al., Nucl. Instrum. Methods Phys. Res., 80/81, 1203–1206 (1993).

    Google Scholar 

  3. A. Perez, G. Marest, J. A. Sawicki, et al., Phys. Rev. B., 28, No. 3, 1227–1238 (1983).

    Google Scholar 

  4. J. Davenas, C. Dupuy, and Xu Xing Long, Radiation Effects, 74, 209–217 (1983).

    Google Scholar 

  5. Z. Z. Iskanderova, T. D. Radjabov, R. U. Leiderman, et al., Nucl. Instrum. Methods, B14, 542–554 (1986).

    Google Scholar 

  6. T. D. Radjabov, and A. S. Bagdasaryan, Surface, No. 11, 104–111 (1986).

    Google Scholar 

  7. U. Yarkulov, Zh.Tekh.Fiz., 54, No. 1, 2222–2226 (1984).

    Google Scholar 

  8. S. Sato and M. Ivaki, Nucl. Instrum. Methods, B45, 145–149 (1990).

    Google Scholar 

  9. L. Romana, P. Thevenard, B. Canut, et al., Nucl. Instr. Methods, B46, No. 1–4, 94–97 (1990).

    Google Scholar 

  10. V. G. Abdrashidov, V. V. Ryzhov, V. P. Sergeev, et al., Fiz. Khim. Obrab. Mater., No. 4, 22–27 (1992).

    Google Scholar 

  11. J. F. Ziegler, J. P. Biersack, and K. Littmark, Stopping and Ranges of Ions in Matter, Pergamon Press, New York, 371 (1985).

    Google Scholar 

  12. V. L. Rvachev and A. P. Slesarenko, The Algebra of Logics and Integral Transformations in Boundary Problems [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  13. G. V. Samsonov, ed., Physical–Chemical Properties of Oxides, Manual [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  14. D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Vol. 1, [Russian translation], Mir, Moscow (1990).

    Google Scholar 

  15. Yu. P. Shlykov and E. A. Ganin, Contact Thermal Resistance [in Russian], Energiya, Moscow (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaisburd, D.I., Pichugin, V.F. & Chebodaev, M.I. Effect of Thermal Resistance of the Dielectric–Metal Contact on the Temperature Field in a Dielectric Exposed to Ion Beams. Russian Physics Journal 44, 376–382 (2001). https://doi.org/10.1023/A:1011992228185

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011992228185

Keywords

Navigation