Skip to main content
Log in

Electrostatic Interactions Play a Critical Role in Mycobacterium tuberculosis Hsp16.3 Binding of Substrate Proteins

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Mycobacterium tuberculosis Hsp16.3, a member of a small heat shock protein family, has chaperone-like activity in vitro and suppresses thermally or chemically induced aggregation of proteins. The nature of the interactions between Hsp16.3 and the denatured substrate proteins was investigated. A dramatic enhancement of chaperone-like activity of Hsp16.3 upon increasing temperature was accompanied by decreased ANS-detectable surface hydrophobicity. Hsp16.3 exhibited significantly enhanced chaperone-like activity after preincubation at 100°C with almost unchanged surface hydrophobicity. The interaction between Hsp16.3 and dithiothreitol-treated insulin B chains was markedly weakened in the presence of NaCl but greatly enhanced by the addition of a low-polarity alcohol, accompanied by significantly increased and decreased surface hydrophobicity, respectively. A working model for Hsp16.3 binding to its substrate proteins is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Morimoto, R. I., Tisscleves, A., and Georgeopovlos, C. (eds.) (1994) The Biology of Heat Shock Proteins and Molecular Chaperones, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Ehrnsperger, M., Buchner, J., and Gastel, M. (1998) in Molecular Chaperones in the Life Cycle of Proteins: Structure, Function and Mode of Action (Fink, A. L., and Goto, Y., eds.) Marcel Dekker, Inc., New York, pp. 533-575.

    Google Scholar 

  • Horwitz, J. (1992) Proc. Natl. Acad. Sci. USA, 89, 10449-10453.

    PubMed  Google Scholar 

  • Merck, K. B., Groenen, P. J., Voorter, C. E., de Harrd-Hoekman, W. A., Horwitz, J., Bloemendal, H., and de Jong, W. W. (1993) J. Biol. Chem., 268, 1046-1052.

    PubMed  Google Scholar 

  • Chang, Z., Primm, T. P., Jakana, J., Lee, I. H., Serysheva, I., Chiu, W., Gilbert, H. F., and Quiocho, F. A. (1996) J. Biol. Chem., 271, 7218-7223.

    PubMed  Google Scholar 

  • Yang, H., Huang, S., Dai, H., Gong, Y., Zheng, C., and Chang, Z. (1999) Protein Sci., 8, 174-179.

    PubMed  Google Scholar 

  • Kim, K. K., Kim, R., and Kim, S. H. (1998) Nature, 394, 595-599.

    PubMed  Google Scholar 

  • Engers, H. D., Houba, V., Bennedsen, J., Buchanan, T. M., Chaparas, S. D., Kadival, G., Closs, O., David, J. R., can Embden, J. D. A., Godal, T., Mustafa, S. A., Ivanyi, J., Young, D. B., Kaufmann, S. H. E., Khomenko, A. G., Kolk, A. H. J., Kubin, M., Louis, J. A., Minden, P., Shinnick, T. M., Trnka, L., and Young, R. A. (1986) Infect. Immun., 51, 718-720.

    PubMed  Google Scholar 

  • Lee, B. Y., Hefta, S. A., and Brennan, P. J. (1992) Infect. Immun., 60, 2066-2074.

    PubMed  Google Scholar 

  • Yuan, Y., Crane, D. D., and Barry, C. E. (1996) J. Bacteriol., 178, 4484-4492.

    PubMed  Google Scholar 

  • Cunningham, A. F., and Spreadbury (1998) J. Bacteriol., 180, 801-808.

    PubMed  Google Scholar 

  • Verbon, A., Hartskeerl, R. A., Schuitema, A., Kolk, A. H. J., Young, D. B., and Lathigra, R. (1992) J. Bacteriol., 174, 1352-1359.

    PubMed  Google Scholar 

  • Yuan, Y., Crane, D. D., Simpson, R. M., Zhu, Y., Hickey, M. J., Sherman, D. R., and Barry, C. E., III. (1998) Proc. Natl. Acad. Sci. USA, 95, 9578-9583.

    PubMed  Google Scholar 

  • Das, K. P., and Surewicz, W. K. (1995) FEBS Lett., 369, 321-325.

    PubMed  Google Scholar 

  • Jones, S., and Thornton, J. M. (1996) Proc. Natl. Acad. Sci. USA, 93, 13-20.

    PubMed  Google Scholar 

  • Raman, B., and Rao, C. M. (1994) J. Biol. Chem., 269, 27264-27268.

    PubMed  Google Scholar 

  • Raman, B., Ramakrishna, T., and Rao, C. M. (1995) FEBS Lett., 365, 133-136.

    PubMed  Google Scholar 

  • Rao, C. M., Raman, B., Ramakrishna, T., Rajaraman, K., Ghosh, D., Datta, S. A., Trivedi, V. D., and Sukhaswami, M. B. (1998) Int. J. Biol. Macromol., 22, 271-281.

    PubMed  Google Scholar 

  • Datta, S. A., and Rao, C. M. (1999) J. Biol. Chem., 274, 34773-34778.

    PubMed  Google Scholar 

  • Reddy, G. B., Das, K. P., Petrash, J. M., and Surewicz, W. K. (2000) J. Biol. Chem., 275, 4565-4570.

    PubMed  Google Scholar 

  • Plater, M. L., Goode, D., and Crabbe, M. J. C. (1996) J. Biol. Chem., 271, 28558-28566.

    PubMed  Google Scholar 

  • Haslbeck, M., Walke, S., Stromer, T., Ehrnsperger, M., White, H. E., Chen, S., Saibil, H. R., and Buchner, J. (1999) EMBO J., 23, 674-675.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, Q., Ke, D. & Chang, Z. Electrostatic Interactions Play a Critical Role in Mycobacterium tuberculosis Hsp16.3 Binding of Substrate Proteins. Biochemistry (Moscow) 66, 904–908 (2001). https://doi.org/10.1023/A:1011960904542

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011960904542

Navigation