Skip to main content
Log in

Plasmid pSym1-32 of Rhizobium leguminosarumbv. viceae Controlling Nitrogen Fixation Activity, Effectiveness of Symbiosis, Competitiveness, and Acid Tolerance

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The symbiotic plasmid (pSym1-32) of the highly effective Rhizobium leguminosarumbv. viceae1-32 strain was identified after the conjugal transfer of replicons carrying Tn5-mobinto the plasmidless Agrobacterium tumefaciensGm1-9023 strain. Plasmid pSym1-32 was transferred intoR. leguminosarumbv. viceaestrains Y14 (showing low effectiveness of symbiosis with Vicia villosa) and Y57 (unable to fix nitrogen). Transconjugants formed Fix+nodules on roots of V. villosaand had a highly enhanced nitrogen fixing ability, increased plant weight, and increased nitrogen accumulation compared to the recipient strains. Variation of transconjugants in symbiotic properties (accompanied by alterations in plasmid composition in some of the conjugants) was detected. Moreover, the donor strain R. leguminosarumbv. viceae1-32 was shown to be more efficient in the competitiveness and acid tolerance than the recipient Y14 strain. Both these properties were transmitted upon transfer of pSym1-32 into the recipient. Thus, plasmid pSym1-32 was shown to carry genes involved in the control of the nitrogen fixing ability, symbiotic effectiveness, competitiveness, and acid tolerance in R. leguminosarumbv. viceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Segovia, L., Pinero, D., Palacios, R., and Martinez-Romero, E., Genetic Structure of a Soil Population of Nonsymbiotic Rhizobium leguminosarum, Appl. Environ. Microbiol., 1991, vol. 57, pp. 426-433.

    Google Scholar 

  2. Thies, J.E., Singleton, P.W., and Bohlool, B.B., Influence of the Size of Indigenous Rhizobial Populations on Establishment and Symbiotic Performance of Introduced Rhizobia on Field-Grown Legumes, Appl. Environ. Microbiol., 1991, vol. 57, pp. 19-28.

    Google Scholar 

  3. Hardarson, G., Methods for Enhancing Symbiotic Nitrogen Fixation, Plant Soils, 1993, vol. 152, pp. 1-17.

    Google Scholar 

  4. Burkhardt, B., Schillik, D., and Puhler, A., Physical Characterization of Rhizobium meliloti Megaplasmids, Plasmid, 1987, vol. 17, pp. 13-25.

    Google Scholar 

  5. Charles, T.C. and Finan, T.M., Genetic Map of Rhizobium meliloti Megaplasmid pRmeSU47b, J. Bacteriol., 1990, vol. 172, no. 5, pp. 2469-2476.

    Google Scholar 

  6. Mercado-Blanco, J. and Toro, N., Plasmids in Rhizobia: The Role of Nonsymbiotic Plasmids, Mol. PlantMicrobe Interact., 1996, vol. 9, no. 7, pp. 535-545.

    Google Scholar 

  7. Sharypova, L.A., Onishchuk, O.P., Chesnokova, O.N., et al., Isolation and Characterization of Rhizobium meliloti Tn5 Mutants Showing Enhanced Symbiotic Effectiveness, Microbiology, 1994, vol. 140, pp. 463-470.

    Google Scholar 

  8. Yurgel, S.N., Soberon, M., Sharypova, L.A., et al., Isolation of Sinorhizobium meliloti Tn5 Mutants with Altered Cytochrome Terminal Oxidase Expression and Improved Symbiotic Performance, FEMS Microbiol. Lett., 1998, vol. 165, pp. 167-173.

    Google Scholar 

  9. Pankhurst, C.E., MacDonald, P.E., and Reeves, J.M., Enhanced Nitrogen Fixation and Competitiveness for Nodulation of Lotus pedunculatus by a Plasmid-Cured Derivative of Rhizobium loti, J. Gen. Microbiol., 1986, vol. 132, no. 8, pp. 2321-2328.

    Google Scholar 

  10. Brewin, N.J., Wood, E.A., and Young, P.W., Contribution of the Symbiotic Plasmid to the Competitiveness of Rhizobium leguminosarum, J. Gen. Microbiol., 1983, vol. 129, no. 1, pp. 2973-2977.

    Google Scholar 

  11. Zhang, X., Zhou, J., Li, F., and Chen, H., Interaction between Exogenous and Indigenous Symbiotic Genes in Rhizobia, Proc. 9th Int. Congr. On Nitrogen Fixation, Mexico, 1992, pp. 753-758.

  12. Sanjuan, J. and Olivares, J., Implication of nifA in Regulation of Genes Located on a Cryptic Plasmid That Affects Nodulation Efficiency, J. Bacteriol., 1989, vol. 171, no. 8, pp. 4154-4161.

    Google Scholar 

  13. Borthakur, D. and Gao, X., A 150-Megadalton Plasmid in Rhizobium etli Strain TAL182 Contains Genes for Nodulation Competitiveness on Phaseolus vulgaris L., Can. J. Microbiol., 1996, vol. 42, pp. 903-910.

    Google Scholar 

  14. Glenn, A.R. and Dilworth, M.J., The Life of Root Nodule Bacteria in the Acidic Underground, FEMS Microbiol. Lett., 1994, vol. 123, pp. 1-10.

    Google Scholar 

  15. Glenn, A.R., Reeve, W.G., Tiwari, R.P., and Dilworth, M.J., Acid Tolerance in Root Nodule Bacteria, Novartis Found Symp., 1999, vol. 221, pp. 112-130.

    Google Scholar 

  16. Chen, H., Richardson, A.E., Gartner, E., et al., Construction of an Acid-Tolerant Rhizobium leguminosarum Biovar trifolii Strain Enhanced for Nitrogen Fixation, Appl. Environ. Microbiol., 1991, vol. 57, pp. 2005-2012.

    Google Scholar 

  17. Chen, N., Gartner, E., and Rolfe, B.G., Involvement of Genes on a Megaplasmid in the Acid-Tolerant Phenotype of Rhizobium leguminosarum Biovar trifolii, Appl. Environ. Microbiol., 1993, vol. 59, no. 4, pp. 1058-1064.

    Google Scholar 

  18. Tiwari, R.P., Reeve, W.G., Dilworth, M.J., and Glenn, A.R., Acid Tolerance in Rhizobium meliloti Strain WSM419 Involves a Two-Component Sensor-Regulator System, Microbiology, 1996, vol. 14, pp. 1693-1704.

    Google Scholar 

  19. Reeve, W.G., Dilworth, M.J., Tiwari, R.P., and Glenn, A.R., Regulation of Exopolysaccharide Production in Rhizobium leguminosarum Biovar viceae WSM710 Involves ExoR, Microbiology, 1997, vol. 143, no. 6, pp. 1951-1958.

    Google Scholar 

  20. Reeve, W.G., Tiwari, R.P., Dilworth, M.J., and Glenn, A.R., A Helicase Gene (helO) in Rhizobium meliloti WSM419, FEMS Microbiol. Lett., 1997, vol. 153, no. 1, pp. 43-49.

    Google Scholar 

  21. Kurchak, O.N., Provorov, N.A., Lisova, N.E., and Simarov, B.V., Symbiotic Properties of R. leguminosarum Bv. viceae Strains Isolated from Nodules of Hairy Vetch Vicia villosa, Byul. Vses. Nauchno-Issled. Inst. S-kh. Mikrobiol., 1990, no. 53, pp. 18-21.

    Google Scholar 

  22. Kurchak, O.N., Provornov, N.A., and Simarov, B.V., Efficiency of Symbiosis with Nodule Bacteria in Various Species of Vicia L., Rast. Resursy, 1995, issue 1, pp. 88-91.

  23. Allen, O.N., Experiments in Soil Bacteriology, Minneapolis: Burgess, 1959, pp. 54-69.

    Google Scholar 

  24. Beringer, J.E., R Factor Transfer in Rhizobium leguminosarum, J. Gen. Microbiol., 1974, vol. 84, pp. 188-198.

    Google Scholar 

  25. Werner, D., Wilcockson, J., and Zimmermann, E., Adsorption and Selection on Rhizobia with Ion-Exchange Papers, Arch. Microbiol., 1975, vol. 105, no. 1, pp. 27-32.

    Google Scholar 

  26. Simon, R., Priefer, V., and Pühler, A., A Broad-Host-Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram-Negative Bacteria, Bio/Technology, 1983, vol. 1, pp. 784-791.

    Google Scholar 

  27. Simon, R., High Frequency Mobilization of Gram-Negative Bacterial Replicons by the In Vitro Constructed Tn5-Mob Transposon, Mol. Gen. Genet., 1984, vol. 196, pp. 413-420.

    Google Scholar 

  28. Ekhardt, T., A Rapid Method for the Identification of Plasmid Deoxyribonucleic Acid in Bacteria, Plasmid, 1978, no. 1, pp. 584-588.

    Google Scholar 

  29. Simarov, B.V., Aronshtam, A.A., Novikova, N.I., et al., Genetic Principles of Selection of Nodule Bacteria, Leningrad: Agropromizdat, 1990.

    Google Scholar 

  30. Hardy, R.W.F., Holstein, R., Jackson, E., and Burns, R.S., The C2H2-C2H4 Assay for N2 Fixation: Laboratory and Field Evaluation, Plant. Physiol., 1968, vol. 43 (suppl.), pp. 9-13.

    Google Scholar 

  31. Onishchuk, O.P., Sharypova, L.A., and Simarov, B.V., Isolation and Characterization of the Rhizobium meliloti Tn5-Mutants with Impaired Nodulation Competitiveness, Plant Soil, 1994, vol. 167, no. 2, pp. 267-274.

    Google Scholar 

  32. Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya Shkola, 1980.

    Google Scholar 

  33. Kurchak, O.N., Provorov, N.A., Lisova, N.E., et al., Responsiveness of Vetch Species and Cultivars to Inoculation of Highly Effective Strains of Rhizobium leguminosarum Bv. viceae, Fiziol. Biokhim. Kul'turn. Rast., 1995, vol. 27, nos. 5–6, pp. 351-359.

    Google Scholar 

  34. Beattie, G.A. and Handelsman, J., Evaluation of a Strategy for Identification for Identifying Nodulation Competitiveness Genes in Rhizobium leguminosarum Biovar phaseoli, J. Gen. Microbiol., 1993, vol. 139, pp. 529-538.

    Google Scholar 

  35. Rosenberg, C. and Hughet, T., The pAtC58 Plasmid of Agrobacterium tumefaciens Is Not Essential for Tumor Induction, Mol. Gen. Genet., 1984, vol. 196, no. 3, pp. 533-536.

    Google Scholar 

  36. Hynes, M., Simon, R., Muller, P., et al., The Two Megaplasmids of Rhizobium meliloti Are Involved in the Effective Nodulation of Alfalfa, Mol. Gen. Genet., 1986, vol. 202, no. 3, pp. 356-362.

    Google Scholar 

  37. Hynes, M.F., Brucksch, K., and Priefer, U., Melanin Production Encoded by a Cryptic Plasmid in a Rhizobium leguminosarum Strain, Arch. Microbiol., 1988, vol. 150, pp. 326-332.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurchak, O.N., Provorov, N.A. & Simarov, B.V. Plasmid pSym1-32 of Rhizobium leguminosarumbv. viceae Controlling Nitrogen Fixation Activity, Effectiveness of Symbiosis, Competitiveness, and Acid Tolerance. Russian Journal of Genetics 37, 1025–1031 (2001). https://doi.org/10.1023/A:1011957413802

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011957413802

Keywords

Navigation