Skip to main content
Log in

Nutrient limitation of phytoplankton production in Alaskan Arctic foothill lakes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We used 54 enrichment bioassays to assess nutrient limitation (N, P) of 14C uptake by natural phytoplankton assemblages in 39 lakes and ponds in the Arctic Foothills region of Alaska. Our purpose was to categorize phytoplankton nutrient status in this under-represented region of North America and to improve our ability to predict the response of primary production to anticipated anthropogenically mediated increases in nutrient loading. Experiments were performed across several watersheds and included assays on terminal lakes and lakes occupying various positions in chains (lakes in series within a watershed and connected by streams). In total, 89% (48 of 54) of the bioassays showed significant stimulation of 14C primary production by some form of nutrient addition relative to unamended controls. A significant response was observed following enrichment with N and P, N alone and P alone in 83, 35 and 22% of the bioassays, respectively. In experiments where N and P proved stimulatory, the influence of N alone was significantly greater than the influence of P alone. Overall, the data point to a greater importance for N than P in regulating phytoplankton production in this region. The degree of response to N and P enrichment declined as the summer progressed and showed no relationship to irradiance or water temperature, suggesting secondary limitation by some micronutrient such as iron as the summer advanced. Phytoplankton nutrient status was often consistent across lakes within a watershed, suggesting that watershed characteristics influence nutrient availability. Lakes in this region will clearly show increased phytoplankton production in response to anthropogenic activities and anticipated changes in climate that will increase nutrient loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aminot, A., D. S. Kirkwood & R. Kérouel, 1997. Determination of ammonia in seawater by the indophenol method: evaluation of the ICES NUTS I/C5 questionaire. Mar. Chem. 56: 59–75.

    Google Scholar 

  • Axler, R. P., R. M. Gersberg & C. R. Goldman, 1980. Stimulation of nitrate uptake and photosynthesis by molybdenum in Castle Lake, California. Can. J. Fish. Aquat. Sci. 37: 707–712.

    Google Scholar 

  • Axler, R. P., C. Rose & C. A. Tikkanen, 1994. Phytoplankton nutrient deficiency as related to atmospheric nitrogen deposition in Northern Minnesota acid-sensitive lakes. Can. J. Fish. aquat. Sci. 51: 1281–1296.

    Google Scholar 

  • Cornwell, J., 1983. The Geochemistry of Manganese, Iron, and Phosphorus in an Arctic Lake. Ph.D. Dissertation, University of Alaska, Fairbanks. 238 pp.

    Google Scholar 

  • Cornwell, J. C. & G. W. Kipphut, 1992. Biogeochemistry of manganese-and iron-rich sediments in Toolik Lake, Alaska. Hydrobiologia 240: 45–59.

    Google Scholar 

  • Diaz, M. M. & F. L. Pedrozo, 1996. Nutrient limitation in Andean-Patagonian lakes at latitude 40-41 S. Arch. Hydrobiol. 138: 123–143.

    Google Scholar 

  • Dillon, P. J. & F. H. Rigler, 1974. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19: 767–773.

    Google Scholar 

  • Dodds, W. K., K. R. Johnson & J. C. Priscu, 1989. Simultaneous nitrogen and phosphorus deficiency in natural phytoplankton assemblages: theory, empirical evidence, and implications for lake management. Lake Res. Manag. 5: 21–26.

    Google Scholar 

  • Dodds, W. K. & J. C. Priscu, 1990. A comparison of methods for assessment of nutrient deficiency of phytoplankton in a large oligotrophic lakes. Can. J. Fish. aquat. Sci. 47: 2328–2338.

    Google Scholar 

  • Elser, J. J. & B. L. Kimmel, 1986. Alteration of phytoplankton phosphorus status during enrichment experiments: implications for interpreting nutrient enrichment bioassay results. Hydrobiologia 133: 217–222.

    Google Scholar 

  • Elser, J. J., E. R. Marzolf & C. R. Goldman, 1990. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. Can. J. Fish. aquat. Sci. 47: 1468–1477.

    Google Scholar 

  • Galloway, J. N., W. H. Schlesinger, H. Levy, A. Michaels & J. L. Schnoor, 1995. Nitrogen fixation: anthropogenic enhancementenvironmental response. Global Biogeochem. Cycles 9: 235–252.

    Google Scholar 

  • Goldman, C. R., 1981. Lake Tahoe: two decades of change in a nitrogen deficient oligotrophic lake. Verh. int. Ver. Limnol. 21: 45–70.

    Google Scholar 

  • Goldman, C. R., A. D. Jassby & S. H. Hackley, 1993. Decadal, interannual, and seasonal variability in enrichment bioassays at Lake Tahoe, California-Nevada, USA. Can. J. Fish. aquat. Sci. 50: 1489–1496.

    Google Scholar 

  • Hecky, R. E. & P. Kilham, 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33: 796–822.

    Google Scholar 

  • Hershey, A. E., G. Gettel, M. E. McDonald, M. C. Miller, H. Mooers, W. J. O'Brien, J. Pastor, C. Richards & J. A. Schuldt, 1999. A geomorphic-trophic model for landscape control of trophic structure in arctic lakes. Bioscience 49: 887–897.

    Google Scholar 

  • Hobbie, J. E., B. J. Peterson, N. Bettez, L. Deegan, W. J. O'Brien, G.W. Kling & G.W. Kipphut, 1999. Impact of global change on the biogeochemistry and ecology of an Arctic freshwater system. Polar Res. 18: 1–8.

    Google Scholar 

  • Hough, R. A. & J. R. L. Thompson, 1996. The influence of a dissolved inorganic nitrogen gradient on phytoplankton community dynamics in a chain of lakes. Hydrobiologia 319: 225–235.

    Google Scholar 

  • Kalff, J., 1971. Nutrient limiting factors in an arctic tundra pond. Ecology 52: 655–659.

    Google Scholar 

  • Kratz, T. K., K. E. Webster, C. J. Bowser, J. J. Magnuson & B. B. Benson, 1997. The influence of landscape on lakes in northern Wisconsin. Freshwat. Biol. 37: 209–217.

    Google Scholar 

  • Lachenbruch, A. H. & B. V. Marshall, 1986. Changing climate: geothermal evidence from permafrost in the Alaskan arctic. Scinece 234: 689–696.

    Google Scholar 

  • Lean, D. R. S. & F. R. Pick, 1981. Photosynthetic response of lake plankton to nutrient enrichment: A test for nutrient limitation. Limnol. Oceanogr. 26: 1001–1019.

    Google Scholar 

  • Lebo, M. E., J. E. Reuter, C. R. Goldman & C. L. Rhodes, 1994. Interannual variability of nitrogen limitation in a desert lake: influence of regional climate. Can. J. Fish. aquat. Sci. 51: 862–872.

    Google Scholar 

  • Markager, S., W. F. Vincent & E. P. Y. Tang, 1999. Carbon fixation by phytoplankton in high Arctic lakes: implications of low temperature for photosynthesis. Limnol. Oceanogr. 44: 597–607.

    Google Scholar 

  • Mayewski, P. A., W. B. Lyons, M. J. Spencer, M. S. Twickler, C. F. Buck & S. Whitlow, 1990. An ice-core record of atmospheric response to anthropogenic sulphate and nitrate. Nature 346: 554–556.

    Google Scholar 

  • McCarthy, J. J., W. R. Taylor & J. L. Taft, 1977. Nitrogenous nutrition of the phytoplankton in the Chesapeake Bay. I. Nutrient availability and phytoplankton preferences. Limnol. Oceanogr. 22: 996–1011.

    Google Scholar 

  • McCoy, G. A., 1983. Nutrient limitation in two arctic lakes, Alaska. Can. J. Fish. aquat. Sci. 40: 1195–1202.

    Google Scholar 

  • Miller, M. C., G. R. Hater, P. Spatt, P. Westlake & D. Yeakel, 1986. Primary production and its control in Toolik Lake, Alaska. Arch. Hydrobiol. 74: 97–131.

    Google Scholar 

  • Mitamura, O. & Y. Saijo, 1985. Urea metabolism and its signi-ficance in the nitrogen cycle in the eutrophic layer of Lake Biwa. I. In situ measurement of nitrogen assimilation and urea decomposition. Arch. Hydrobiol. 107: 23–51.

    Google Scholar 

  • Mitchell, J. F. B., S. Menabe, T. Tokioka & V. Meleshko, 1993. Equlibrium climate change. In Houghton, J. T., G. J. Jenkins & J. J. Ephraums (eds), Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge: 131–172.

    Google Scholar 

  • Morris, D. P. & W. M. Lewis, 1988. Phytoplankton nutrient limitation in Colorado mountain lakes. Freshwat. Biol. 20: 315–327.

    Google Scholar 

  • O'Brien, W. J., A. E. Hershey, J. E. Hobbie, M. A. Hullar, G. W. Kipphut & M. C. Miller, 1992. Control mechanisms of arctic lake ecosystems: a limnocorral experiment. Hydrobiologia 240: 143–188.

    Google Scholar 

  • Paerl, H., 1997. Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as 'new' nitrogen and other nutrient sources. Limnol. Oceanogr. 42: 1154–1165.

    Google Scholar 

  • Parsons, T. R., Y. Maita & C. M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon, Oxford. 173 pp.

  • Ping, C. L., J. G. Bockheim, J. M. Kimble, G. J. Michaelson & D. A. Walker, 1998. Characteristics of cryogenic soils along a latitudinal transect in Arctic Alaska. J. Geophys. Res. 103: 28917–28928.

    Google Scholar 

  • Priscu, J. C., 1995. Phytoplankton nutrient deficiency in lakes of the McMurdo dry valleys, Antarctica. Freshwat. Biol. 34: 215–227.

    Google Scholar 

  • Rae, R. & W. F. Vincent, 1998. Phytoplankton production in subarctic lake and river ecosystems: development of a photosynthesistemperature-irradiance model. J. Plankton Res. 20: 1293–1312.

    Google Scholar 

  • Reuter, J. E., C. L. Rhodes, M. E. Lebo, M. Kotzman & C. R. Goldman, 1993. The importance of nitrogen in Pyramid Lake (Nevada, USA), a saline, desert lake. Hydrobiologia 267: 179–189.

    Google Scholar 

  • Rowntree, P. R., 1997. Global and regional patterns of climate change: Recent prediction for the Arctic. In Oechel, W. T., T. V. Callaghan, T. Gilmanov, J. I. Holten, B. Maxwell, U. Molau & B. Sveinbjornssön (eds.), Global Change and Arctic Terrestrial Ecosystems, Springer, NY: 106–113.

    Google Scholar 

  • Schindler, D.W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.

    Google Scholar 

  • Schindler, D. W., 1978. Factors regulating phytoplankton production and standing crop in the world's freshwaters. Limnol. Oceanogr. 23: 478–486.

    Google Scholar 

  • Schindler, D. W., 1988. Experimental studies of chemical stressors on whole lake ecosystems. Verh. int. Ver. Limnol. 23: 11–41.

    Google Scholar 

  • Shaver, G. R., K. J. Nadelhoffer & A. E. Giblin, 1991. Biogeochemical diversity and element transport in a heterogeneous landscape, the North Slope of Alaska. In Turner, M. G. & R. H. Gardner (eds), Quantitative Methods in Landscape Ecology. Ecol Stud. 82, Springer, Berlin: 105–125.

    Google Scholar 

  • Stumm, W. & J. J. Morgan 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. John Wiley & Sons, Inc., New York. 1022 pp.

    Google Scholar 

  • Suttle, C. A. & P. J. Harrison, 1988. Ammonium and phosphate uptake rates, N:P supply ratios, and evidence for N and P limitation in some oligotrophic lakes. Limnol. Oceanogr. 33: 186–202.

    Google Scholar 

  • Taylor, D., S. Nixon, S. Granger & B. Buckley, 1995. Nutrient limitation and the eutrophication of coastal lagoons. Mar. Ecol. Prog. Ser. 127: 235–244.

    Google Scholar 

  • Turpin, D. H., I. R. Elrifi, D. G. Birch, H. G. Weger & J. J. Holmes, 1988. Interactions between photosynthesis, respiration and nitrogen assimilation in microalgae. Can. J. Bot. 66: 2083–2097.

    Google Scholar 

  • Twiss, M. R., J.-C. Auclair & M. N. Charlton, 2000. An investigation into iron-stimulated phytoplankton productivity in epipelagic Lake Erie during thermal stratification using trace metal clean techniques. Can. J. Fish. Aquat. Sci. 57: 86–95.

    Google Scholar 

  • Vincent, W. F. & C. L. Vincent, 1982a. Response to nutrient enrichment by the phytoplankton of Antarctic coastal lakes and the inshore Ross Sea. Polar Biol. 1: 159–165.

    Google Scholar 

  • Vincent, W. F. & C. L. Vincent, 1982b. Factors controlling phytoplankton production in Lake Vanda (77S). Can. J. Fish. Aquat. Sci. 39: 1602–1609.

    Google Scholar 

  • Vincent, W. F., W. Wurtsbaugh, C. L. Vincent & P. J. Richerson, 1984. Seasonal dynamics of nutrient limitation in a tropical high-altitude lake (Lake Titicaca, Peru-Bolivia): Application of physiological bioassays. Limnol. Oceanogr. 29: 540–552.

    Google Scholar 

  • Vollenweider, R. A., 1976. Advances in defining critical loading levels of phosphorus in lake eutrophication. Mem. Ist. Ital. Idrobiol. 33: 53–83.

    Google Scholar 

  • Wahrhaftig, C., 1965. Physiographic divisions of Alaska, US Geol. Surv. Prof. Pap. 482, US Gov. Print. Off., Washington, DC.

    Google Scholar 

  • Walker, M. W., D. A. Walker & N. A. Auerback, 1994. Plant communities of tussock tundra landscape in the Brooks Range Foothills, Alaska. J. Vegetat. Sci. 5: 843–866.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological Analyses. Springer, New York, 391 pp.

    Google Scholar 

  • Whalen, S. C. & V. Alexander, 1986a. Chemical influences on 14C and 15N primary production in an arctic lake. Polar Biol. 5: 211–219.

    Google Scholar 

  • Whalen, S. C. & V. Alexander, 1986b. Seasonal inorganic carbon and nitrogen transport by phytoplankton in an arctic lake. Can. J. Fish. aquat. Sci. 43: 1177–1186.

    Google Scholar 

  • Whalen, S. C. & J. R. Cornwell, 1985. Nitrogen, phosphorus, and organic carbon cycling in an Arctic lake. Can. J. Fish. aquat. Sci. 42: 797–808.

    Google Scholar 

  • Whalen, S. C. & J. R. Cornwell, 1988. Comparison of chemical and biological N budgets in an arctic lake: implications for phytoplankton production. In Degens, E. T., S. Kempe & A. S. Naidu (eds), Transport of Carbon and Minerals in Major World Rivers, Lakes and Estuaries. Mitt. Geol. Palaont. Inst. Univ. Hamburg, SCOPE/UNEP, 66: 99–115.

    Google Scholar 

  • White, E. & G.W. Payne, 1977. Chlorophyll production, in response to nutrient additions, by the algae in Lake Taupo water. New Zealand J. mar Freshwat. Res. 11: 501-507.

    Google Scholar 

  • White, E., K. Law, G. Payne & S. Pickmere, 1985. Nutrient demand and availability among planktonic communities-an attempt to assess nutrient limitation to plant growth in 12 central volcanic plateau lakes. New Zealand J. mar Freshwat. Res.19: 49–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.C. Whalen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levine, M., Whalen, S. Nutrient limitation of phytoplankton production in Alaskan Arctic foothill lakes. Hydrobiologia 455, 189–201 (2001). https://doi.org/10.1023/A:1011954221491

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011954221491

Navigation