Skip to main content
Log in

Ontogenesis of the snail, Helix aspersa: Embryogenesis timetable and ontogenesis of GABA-like immunoreactive neurons in the central nervous system

  • Published:
Journal of Neurocytology

Abstract

Late stages of embryogenesis in the terrestrial snail Helix aspersa L. were studied and a developmental timetable was produced. The distribution of gamma-aminobutyric acid-like immunoreactive (GABA-ir) elements in the CNS of the snail was studied from embryos to adulthood in wholemounts. In adults, approximately 226 GABA-ir neurons were located in the buccal, cerebral and pedal ganglia. The population of GABA-ir cells included four pairs of buccal neurons, three neuronal clusters in the pedal ganglia, two clusters and six single neurons in the cerebral ganglia. GABA-ir fibers were observed in all ganglia and in some nerves. The first detected pair of GABA-ir cells in the embryos appeared in the buccal ganglia at about 63–64% of embryonic development. Five pairs of GABA-ir cell bodies were observed in the cerebral ganglia at about 64–65% of development. During the following 30% of development three more pairs of GABA-ir neurons were detected in the buccal ganglia and over fifteen cells were detected in each cerebral ganglion. At the stage of 70% of development, the first pair of GABA-ir neurons was found in the pedal ganglia. In the suboesophageal ganglion complex, GABA-ir fibers were first detected at about 90% of embryonic development. In the posthatching period, the quantity of GABA-ir neurons reached the adult status in four days in the cerebral ganglia, and in three weeks in the pedal ganglia. In juveniles, transient expression of GABA was found in the pedal ganglia (fourth cluster).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alkon, D. L., Sanchez-Andres, J. V., Ito, E., Oka, K., Yoshioka, T. & Collin, C. (1992) Longterm transformation of an inhibitory into an excitatory GABAergic synaptic response. Proceedings of the National Academy of Sciences USA 89, 11862–11866.

    Google Scholar 

  • Arshavsky, Y. I., Deliagina, T. G., Gamkrelidze, G. N., Orlovsky, G. N., Panchin, Y. V., Popova, L. B. & Shupliakov, O. V. (1993) Pharmacologically induced elements of the hunting and feeding behavior in the pteropod mollusc Clione limacina. I. Effects of GABA. Journal of Neurophysiology 69, 512–521.

    PubMed  Google Scholar 

  • Balaban, P. M., Zakharov, I. S. & Saakian, S. A. (1980) Effect of gamma aminobutyric acid on command neurons of Helix lucorum snail neurons. Zhurnal Evolutsionnoy Biokhimii i Fiziologii 16, 261–265 (in Russian).

    Google Scholar 

  • Bokisch, A. J., Bold, J. M., Gardner, C. R., Perkins, M. N., Roberts, C. J., Stone, T. W. & Walker, R. J. (1984) The action of gammaaminobutyric acid (GABA) and ethylenediamine (EDA) on Limulus and Helix central neurones and rat cerebellar and sympathetic ganglion neurones. General Pharmacology 15, 497–504.

    PubMed  Google Scholar 

  • Bokisch, A. J. & Walker, R. J. (1986a) The action of Avermectin(MK936) on identified central neurones from Helix and its interaction with acetylcholine and gammaaminobutyric acid (GABA) responses. Comparative Biochemistry and Physiology 84C, 119–125.

    Google Scholar 

  • Bokisch, A. J. & Walker, R. J. (1986b) The ionic mechanism associated with the action of putative transmitters on identified neurons of the snail, Helix aspersa. Comparative Biochemistry and Physiology 84C, 231–241.

    Google Scholar 

  • Byrne, J. H. & Kandel, E. R. (1996) Presynaptic facilitation revisited: State and time dependence. Journal of Neuroscience 16, 426–435.

    Google Scholar 

  • Cash, D. & Carew, T. J. (1989) A quantitative analysis of the development of the central nervous system in juvenile Aplysia californica. Journal of Neurobiology 20, 25–47.

    PubMed  Google Scholar 

  • Collin, C., Ito, E., Oka, K., Yoshioka, T., Sanchez-Andres, J. V., Matzel, L. D. & Alkon, D. L. (1992) The role of calcium in prolonged modification of a GABAergic synapse. Journal of Physiology Paris 86, 139–145.

    Google Scholar 

  • Cooke, I. R. C., Delaney, K. & Gelperin, A. (1985) Complex computation in a small neural network. In Memory Systems of the Brain (edited by Weinberger, N. M., McGaugh, J. L. & Lynch, G.) pp. 173–191. New York: Guilford.

    Google Scholar 

  • Cooke, I. R. C. & Gelperin, A. (1988) Distribution of GABA-like immunoreactive neurons in the slug Limax maximus. Cell and Tissue Research 253, 77–81.

    PubMed  Google Scholar 

  • Creek, G. A. (1950) The reproductive system and embryology of the snail Pomatias elegans (Muller). Proceedings of the Zoological Society of London 121, 599–640.

    Google Scholar 

  • Croll, R. P. & Voronezhskaya, E. E. (1995) Early FMRFamide immunoreactive cells in gastropod neurogenesis. Acta Biologica Hungarica 46, 295–303.

    PubMed  Google Scholar 

  • Croll, R. P. & Voronezhskaya, E. E. (1996) Early elements in gastropod neurogenesis. Developmental Biology 173, 344–347.

    PubMed  Google Scholar 

  • Croll, R. P., Voronezhskaya, E. E., Hiripi L. & Elekes K. (1999) Developmenr of catecholamineergic neurons in the pond snail, Lymnaea stagnalis: II. Postembryonic development of central and peripheral cells. Journal of Comparative Neurology 404, 297–309.

    PubMed  Google Scholar 

  • Dyakonova, V., Carlberg, M., Sakharov, D. & Elofsson, R. (1995) Anatomical basis for interactions of enkephalins with other transmitters in the CNS of a snail. Journal of Comparative Neurology 361, 38–47.

    PubMed  Google Scholar 

  • Elekes, K., Voronezhskaya, E. E., Hiripi, L., Eckert, M. & Rapus, J. (1996) Octopamine in the developing nervous system of the pond snail, Lymnaea stagnalis L. Acta Biologica Hungarica 47, 73–87.

    PubMed  Google Scholar 

  • Fol, H. (1880). Etudes sur le developpement des Mollusques. III Developpement des Gasteropodes Pulmones. Archive de Zoologie Experimentale General 6, 103–232.

    Google Scholar 

  • Goldberg, J. I. & Kater, S. B. (1989) Expression and function of the neurotransmitter serotonin during development of the Helisoma nervous system. Developmental Biology 131, 483–495.

    PubMed  Google Scholar 

  • Goldstein, R., Kistler, H. B., Steinbusch, H. W. M. & Schwartz, J. H. (1984) Distribution of serotonin-immunoreactivity in juvenile Aplysia. Neuroscience 11, 535–547.

    PubMed  Google Scholar 

  • Gutierrez, R. (1994) Synaptic interactions in a newly identified excitatory synapse of Helix aspersa: Concurrent enkephalinergic and GABAergic modulation. Brain Research 667, 243–254.

    PubMed  Google Scholar 

  • Haarmeier, T., Altrup, U. & Speckmann, E. J. (1994) Attenuation of a voltage-dependent sodium current by GABA (identified neurons, buccal ganglia, Helix pomatia). Brain Research 663, 131–139.

    PubMed  Google Scholar 

  • Hatakeyama, D. & Ito, E. (2000) Distribution and developmental changes in GABA-like immunoreactive neurons in the central nervous system of pond snail, Lymnaea stagnalis. Journal of Comparative Neurology 418, 310–322.

    PubMed  Google Scholar 

  • Hernadi, L. (1994) Distribution and anatomy of GABAlike immunoreactive neurons in the central and peripheral nervous system of the snail Helix pomatia. Cell and Tissue Research 277, 189–198.

    PubMed  Google Scholar 

  • Hernadi, L., Elekes, K. & S.-Rozsa, K. (1989) Distribution of serotonin-containing neurons in the central nervous system of the snail Helix pomatia. Comparison of immunocytochemical and 5,6-dihydroxytryptamine labelling. Cell and Tissue Research 257, 313–323.

    Google Scholar 

  • Ito, E., Oka, K., Collin, C., Schreurs, B. G., Sakakibara, M. & Alkon, D. L. (1994). Intracellular calcium signals are enhanced for days after Pavlovian conditioning. Journal of Neurochemistry 62, 1337–1344.

    PubMed  Google Scholar 

  • Ivanova-Kazas, O. M. (1977) Comparative embryology of the invertebrate animals (in Russian) 312 p. Moscow: Nauka.

    Google Scholar 

  • von Jhering, H. (1875) Ueber die Entwickelungsgeschichte von Helix. Zugleich ein Beitrag zur vergleichenden Anatomie und Phylogenie der Pulmonaten. Jenaische Zeitschrift fur Naturwissenschaft, 299–339.

  • Kovacs, T. & Erdelyi, L. (1995) Actions of Zn2+ on spontaneous, stimulus and transmitter evoked events in Helix neurons. Acta Biologica Hungarica 46, 427–430.

    PubMed  Google Scholar 

  • Marois, R. & Carew, T. J. (1997a) Ontogeny of serotonergic neurons in Aplysia californica. Journal of Comparative Neurology 386, 477–490.

    PubMed  Google Scholar 

  • Marois, R. & Carew, T. J. (1997b) Projection patternsand target tissues of the serotonergic cells in larval Aplysia californica. Journal of Comparative Neurology 386, 491–506.

    PubMed  Google Scholar 

  • Marois, R. & Croll, R. P. (1992) Development of serotoninlike immunoreactivity in the embryonic nervous GABAergic neurons in snail 91 system of the snail Lymnaea stagnalis.Journal of Comparative Neurology 322, 255–265.

    PubMed  Google Scholar 

  • Mescheriakov, V. N. (1975) The common pond snail Lymnaea stagnalis L. In Animal Species for Developmental Studies (edited by Dettlaf, D. A. & Vassetzky, S. G.) pp. 53–94. New York, London: Plenum Press.

    Google Scholar 

  • Morrill, J. B. (1982) Development of the pulmonate gastropod, Lymnaea. In Developmental Biology of the Freshwater Invertebrates (edited by Harrison, F. W. & Cowden, R. R.) pp. 399–483. New York: Alan R. Liss.

    Google Scholar 

  • Morse, D. E., Hooker, N., Duncan, H. & Jensen, R. (1979) g-Aminobutyric acid, a neurotransmitter, induces planktonic abalone larvae to settle and begin metamorphosis. Science 204, 407–410.

    Google Scholar 

  • Needham, J. (1942) Biochemistry and Morphogenesis. Cambridge: University Press.

    Google Scholar 

  • Nolen, T. G. & Carew, T. J. (1994) Ontogeny of serotonin-immunoreactive neurons in juvenile Aplysia californica: implications for the development of learning. Behavioral and Neural Biology 61, 282–295.

    PubMed  Google Scholar 

  • Norekian, T. P. (1999) GABAergic excitatory synapses and electrical coupling sustain prolonged discharges in the prey capture neural network of Clione limacina. Journal of Neuroscience 19, 1863–1875.

    PubMed  Google Scholar 

  • Osborne, N. N. (1971) Occurence of GABA and taurine in the nervous systems of the dogfish and some invertebrates. Comparative and General Pharmacology 2, 433–438.

    PubMed  Google Scholar 

  • Raven, C. P. (1966) Morphogenesis: The Analysis of Molluscan Development. Oxford: Pergamon Press.

    Google Scholar 

  • Richmond, J. E., Murphy, A. D., Bulloch, A. G. M. & Lukowiak, K. (1986) Evidence for an excitatory effect of GABA on feeding patterned motor activity (PMA) of Helisoma trivolvis. Society for Neuroscience Abstracts 12, 792.

    Google Scholar 

  • Richmond, J. E., Bulloch, A. G. M., Bauce, L. & Lukowiak, K. (1991) Evidence for the presence, synthesis, immunoreactivity, and uptake of GABA in the nervous system of the snail Helisoma trivolvis. Journal of Comparative Neurology 307, 131–143.

    PubMed  Google Scholar 

  • Roberts, E., Chase, T. N. & Tower, D. B. (1976) GABA in Nervous System Function, Vol. 5 NewYork: Raven Press.

    Google Scholar 

  • Serfozo Z., Elekes K. & Varga V. (1998) NADPHdiaphorase activity in the nervous system of the embryonic and juvenile pond snail, Lymnaea stagnalis. Cell and Tissue Research 292, 579–586.

    Google Scholar 

  • Voronezhskaya, E. E. & Elekes, K. (1993) Distribution of serotonin-like immunoreactive neurones in the embryonic nervous system of Lymnaeid and Planorbid snails. Neurobiology 1, 371–383.

    PubMed  Google Scholar 

  • Voronezhskaya, E. E. & Elekes, K. (1996) Transient and sustained expression of FMRFamide-like immunoreactivity in the developing nervous system of Lymnaea stagnalis (Mollusca, Pulmonata). Cellular and Molecular Neurobiology 16, 661–676.

    PubMed  Google Scholar 

  • Voronezhskaya, E. E., Hiripi L., Elekes K. & Croll, R. P. (1999) Developmenr of catecholamineergic neurons in the pond snail, Lymnaea stagnalis: I. Embryonic development of dopamine-containing neurons and dopamine-dependent behaviors. Journal of Comparative Neurology 404, 285–296.

    PubMed  Google Scholar 

  • Walker, R. J., Chen, M. L., Pedder, S., Holdendye, L., White, A. R. & Sharma, R. (1993) Neuropharmacological studies on identified central neurones of the snail, Helix aspersa. Zhurnal Vysshey Nervnoy Deiatelnosti Imeni I. P. Pavlova 43, 109–120. (in Russian).

    Google Scholar 

  • Yongsiri, A., Funase, K., Takeuchi, H., Shimamoto, K. & Ohfune, Y. (1988) Classification of GABA receptors in snail neurones. European Journal of Pharmacology 155, 239–245.

    PubMed  Google Scholar 

  • Zakharov, I. S. & Balaban, P. M. (1987) Neural mechanisms of age-dependent changes in avoidance behaviour of the snail Helix lucorum. Neuroscience 23, 721–729.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ierusalimsky, V.N., Balaban, P.M. Ontogenesis of the snail, Helix aspersa: Embryogenesis timetable and ontogenesis of GABA-like immunoreactive neurons in the central nervous system. J Neurocytol 30, 73–91 (2001). https://doi.org/10.1023/A:1011921525359

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011921525359

Keywords

Navigation