Skip to main content
Log in

Gas-Generating Porous Electrodes: Large Ohmic Resistances

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

It is shown how it becomes possible, in gas-generating porous electrodes (GGPE), to construct polarization curves (PC) that encompass also the region of high ohmic resistances up to an ultimate possible overvoltage that is reached at practically complete expulsion of the electrolyte out of the electrode pores near the front surface of the electrode, without restricting oneself, while taking into account ohmic limitations, by not-too-high values of overvoltages. As the true appearance of the dependence of the magnitude of an effective specific ionic electroconductivity of GGPE on the specific features of the structure of its porous space and the degree of occupation of its porous space by the electrolyte and gas is unknown, an attempt is undertaken to evaluate possible values of limiting ohmic limitations, specifically, to take into account the presence of both maximum and minimum ohmic losses. Calculations of PC and some other characteristics of GGPE are conducted using the constants that are close to the constants that take place for the process of formation of chlorine in dimensionally stable anodes. It is discovered that, if one selects a nonoptimum structure of the porous space of the electrode (this means that, with the emergence of gas pores in the electrode, ohmic losses would rapidly increase), then one fails to realize the values of the electrochemical activity of the electrode in excess of a few A cm–2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Chirkov, Yu.G., Elektrokhimiya, 2000, vol. 36, p. 526.

    Google Scholar 

  2. Chirkov, Yu.G. and Chernenko, A.A., Elektrokhimiya, 2001, vol. 37, p. 546.

    Google Scholar 

  3. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2001, vol. 37, p. 557.

    Google Scholar 

  4. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2001, vol. 37, p. 336.

    Google Scholar 

  5. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2001, vol. 37, p. 987.

    Google Scholar 

  6. Chirkov, Yu.G., Rostokin, V.I., and Pshenichnikov, A.G., Elektrokhimiya, 1991, vol. 27, p. 235.

    Google Scholar 

  7. Chirkov, Yu.G. and Pshenichnikov, A.G., Vodorodn. Energ. Tekhnol., 1992, no. 1, p. 23.

  8. Chirkov, Yu.G. and Pshenichnikov, A.G., Elektrokhimiya, 1993, vol. 29, p. 892.

    Google Scholar 

  9. Chirkov, Yu.G., Rostokin, V.I., and Pshenichnikov, A.G., Elektrokhimiya, 1994, vol. 30, p. 412.

    Google Scholar 

  10. Chirkov, Yu.G., Rostokin, V.I., and Pshenichnikov, A.G., Elektrokhimiya, 1994, vol. 30, p. 1046.

    Google Scholar 

  11. Chirkov, Yu.G. and Pshenichnikov, A.G., Elektrokhimiya 1994, vol. 30, p. 1338.

    Google Scholar 

  12. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 1996, vol. 32, p. 1082.

    Google Scholar 

  13. Chirkov, Yu.G., Rostokin, V.I., and Pshenichnikov, A.G., Elektrokhimiya, 1996, vol. 32, p. 1090.

    Google Scholar 

  14. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 1997, vol. 33, p. 796.

    Google Scholar 

  15. Chirkov, Yu.G. and Pshenichnikov, A.G., Elektrokhimiya, 1997, vol. 33, p. 956.

    Google Scholar 

  16. Chirkov, Yu.G., Rostokin, V.I., and Pshenichnikov, A.G., Elektrokhimiya, 1997, vol. 33, p. 962.

    Google Scholar 

  17. Rostokin, V.I., Chirkov, Yu.G., and Pshenichnikov, A.G., Elektrokhimiya, 1999, vol. 35, p. 191.

    Google Scholar 

  18. Roginskaya, Yu.E. and Morozova, O.V., Electrochim. Acta, 1995, vol. 40, p. 817.

    Google Scholar 

  19. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2001, vol. 37, p. 409.

    Google Scholar 

  20. Forsythe, G., Malcolm, M., and Moler, C., Computer Methods for Mathematical Computations, Englewood Cliffs: Prentice-Holl, 1977.

    Google Scholar 

  21. Ralston, A. and Wilf, H.S., Mathematical Methods for Digital Computers, New York: Wiley, 1960, p. 110.

    Google Scholar 

  22. Bulirsch, R. and Stoer, J., Numer. Math., 1966, vol. 8, p. 1.

    Google Scholar 

  23. Smirnov, V.I., Kurs vysshei matematiki (Textbook of Higher Mathematics), Moscow: Gostekhteorizdat, 1954, vol. 2.

    Google Scholar 

  24. Krylov, V.I., Bobkov, V.V., and Monastyrskii, P.I., Vychislitel'nye metody (Computation Techniques), Moscow: Fizmatgiz, 1976, vol. 1.

    Google Scholar 

  25. Gradshtein, I.S. and Ryzhik, I.M., Tablitsy integralov, summ, ryadov i proizvedenii (Tables of Integrals, Sums, Series, and Products), Moscow: Fizmatgiz, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, Y.G., Rostokin, V.I. Gas-Generating Porous Electrodes: Large Ohmic Resistances. Russian Journal of Electrochemistry 37, 952–959 (2001). https://doi.org/10.1023/A:1011904512159

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011904512159

Keywords

Navigation