Skip to main content
Log in

Retrotransposons of the Tnt1B family are mobile in Nicotiana plumbaginifolia and can induce alternative splicing of the host gene upon insertion

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Active retrotransposons have been identified in Nicotiana plumbaginifolia by their ability to disrupt the nitrate reductase gene in chlorate–resistant mutants selected from protoplast–derived cultures. In mutants E23 and F97, two independent insertions of Tnp2, a new retrotransposon closely related to the tobacco Tnt1 elements, were detected in the nitrate reductase gene. These two Tnp2 elements are members of the Tnt1B subfamily which shows that Tnt1B elements can be active and mutagenic in the N. plumbaginifolia genome. Furthermore, these results suggest that Tnt1B is the most active family of Tnt1 elements in N. plumbaginifolia, whereas in tobacco only members of the Tnt1A subfamily were found inserted in the nitrate reductase gene. The transcriptional regulations of Tnp2 and Tnt1A elements are most probably different due to non–conserved U3 regions. Our results thus support the hypothesis that different Nicotiana species contain different active Tnt1 subfamilies and that only one active Tnt1 subfamily might be maintained in each of these species. The Tnp2 insertion found in the F97 mutant was found to be spliced out of the nitrate reductase mRNA by activation of cryptic donor and acceptor sites in the nitrate reductase and the Tnp2 sequences respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennetzen, J.L. 2000. Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol. 42: 251–269.

    Google Scholar 

  • Boeke, J.D. and Corces, V.G. 1989. Transcription and reverse transcription of retrotransposons. Annu. Rev. Microbiol. 43: 403–434.

    Google Scholar 

  • Brown, J.W.S. and Simpson C.G. 1998. Splice site selection in plant pre-mRNA splicing. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 77–95.

    Google Scholar 

  • Casacuberta, J.M. and Grandbastien, M.A. 1993. Characterisation of LTR sequences involved in the protoplast specific expression of the tobacco Tnt1 retrotransposon. Nucl. Acids Res. 21: 2087–2093.

    Google Scholar 

  • Casacuberta, J.M., Vernhettes, S. and Grandbastien, M.A. 1995. Sequence variability within the tobacco retrotransposon Tnt1 population. EMBO J. 14: 2670–2678.

    Google Scholar 

  • Casacuberta, J.M., Vernhettes, S. Audeon, C. and Grandbastien, M.A. 1997. Quasispecies in retrotransposons: a role for sequence variability in Tnt1 evolution. Genetica 100: 109–117.

    Google Scholar 

  • Chérel, I., Gonneau, M., Meyer, C., Pelsy, F. and Caboche, M. 1990. Biochemical and immunological characterization of nitrate reductase deficient nia mutants of Nicotiana plumbaginifolia.Plant Physiol. 92: 659–665.

    Google Scholar 

  • Costa, A.P.P., Scortecci, K.C., Hashimoto R.Y., Araujo P.G., Grandbastien, M.A. and van Sluys, M.A. 1999. Retrolyc1-1, a member of the Tnt1 retrotransposon super-family in the Lycopersicon peruvianum genome. Genetica 107: 65–72.

    Google Scholar 

  • Daboussi, M.J., Langin, T. and Brygoo, Y. 1992. Fot1, a new family of fungal transposable elements. Mol. Gen. Genet. 232: 12–16.

    Google Scholar 

  • Dellaporta, S. L., Wood, J. and Hicks, J. B. 1983. A plant DNA miniprep: version II. Plant Mol. Biol. Rep. 1: 19–21.

    Google Scholar 

  • Flavell, A. J., Dunbar, E., Anderson, R., Pearce, S.R., Hartley, R. and Kumar, A. 1992. Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucl. Acids Res. 20: 3639–3644.

    Google Scholar 

  • Gabard, J., Marion-Poll, A., Chérel, I., Meyer, C., Müller, A. and Caboche, M. 1987. Isolation and characterization of Nicotiana plumbaginifolia nitrate reductase-deficient mutants: genetic and biochemical characterization of the Nia complementation group. Mol. Gen. Genet. 209: 596–606.

    Google Scholar 

  • Grandbastien, M.A. 1998. Activation of plant retrotransposon under stress conditions. Trends Plant Sci. 3: 181–187.

    Google Scholar 

  • Grandbastien, M.A., Spielmann, A. and Caboche, M. 1989. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337: 376–380.

    Google Scholar 

  • Grandbastien, M.A., Audeon, C., Casacuberta, J.M., Grappin, P., Lucas, H., Moreau, C. and Pouteau, S. 1994. Functional analysis of the tobacco Tnt1 retrotransposon. Genetica 93: 181–189.

    Google Scholar 

  • Grappin, P., Audéon, C., Chupeau, M.C. and Grandbastien, M.A. 1996. Molecular and functional characterization of Slide, an Ac-like autonomous transposable element from tobacco. Mol. Gen. Genet. 252: 386–397.

    Google Scholar 

  • Hawkins, J.D. 1988. A survey on intron and exon lengths. Nucl. Acids Res. 16: 9893–9905.

    Google Scholar 

  • Hirochika, H. 1993. Activation of tobacco retrotransposons during tissue culture. EMBO J. 12: 2521–2528.

    Google Scholar 

  • Junakovic, N., Di Franco, C., Best-Belpomme, M. and Echalier, G. 1988. On the transposition of copia-like nomadic elements in cultured Drosophila cells. Chromosoma 97: 212–218.

    Google Scholar 

  • Kapitonov, V.V. and Jurka, J. 1999. The long terminal repeat of an endogenous retrovirus induces alternative splicing and encodes an additional carboxy-terminal sequence in the human leptin receptor. J. Mol. Evol. 48: 248–251.

    Google Scholar 

  • Kumar, A and Bennetzen, J.L. 1999. Plant retrotransposons. Annu. Rev. Genet. 33: 479–532.

    Google Scholar 

  • Lal, S., Choi, J.H., Shaw, J.R. and Hannah, L.C. 1999. A splice site mutant of maize activates cryptic splice sites, elicits intron inclusion and exon exclusion, and permits branch point elucidation. Plant Physiol. 121: 411–418.

    Google Scholar 

  • Lee, M. and Phillips, R.L. 1988. The chromosomal basis of somaclonal variation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 413–437.

    Google Scholar 

  • Lee, J.S., Haruna, T., Ishimoto, A., Honjo, T. and Yanagawa S. 1999. Intracisternal type A particle-mediated activation of the Notch4/int3 gene in a mouse mammary tumor: generation of truncated Notch4/int3 mRNAs by retroviral splicing events. J. Virol. 73: 5166–5171.

    Google Scholar 

  • Meyer, C., Levin, J. M., Roussel, J.M. and Rouzé, P. 1991. Mu-tational and structural analysis of the nitrate reductase heme domain of Nicotiana plumbaginifolia. J. Biol. Chem. 266: 20561–20566.

    Google Scholar 

  • Meyer, C., Pouteau, S., Rouzé, P. and Caboche, M. 1994. Isolation and molecular characterization of dTnp1, a mobile and defective transposable element of Nicotiana plumbaginifolia. Mol.Gen. Genet. 242: 194–200.

    Google Scholar 

  • Meyer, C. and Caboche, M. 1998. Manipulation of nitrogen metabolism. In: K. Lindsey (Ed.) Transgenic Plant Research, Harwood Academic Publishers, London, pp. 125–133.

    Google Scholar 

  • Pouteau, S., Spielman, A., Meyer, C., Grandbastien, M.A. and Caboche, M. 1991. Effects of Tnt1 tobacco retrotransposon insertion on target gene transcription. Mol. Gen. Genet. 228: 233–239.

    Google Scholar 

  • Purugganan, M.D. 1993. Transposable elements as introns: evolu-tionary connections. Trends Ecol. Evol. 8: 239–243.

    Google Scholar 

  • SanMiguel, P., Tikhonov, A., Jin, Y.K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., Springer, P.S., Edwards, K.J., Lee, M., Avramova, Z. and Bennetzen, J.L. 1996. Nested retro-transposons in the intergenic regions of the maize genome. Science 274: 765–768.

    Google Scholar 

  • Varagona, M.J., Purugganan, M. and Wessler, S.R. 1992. Alternative splicing induced by insertions of retrotransposons into the maize waxy gene. Plant Cell 4: 811–820.

    Google Scholar 

  • Vernhettes, S., Grandbastien, M.A. and Casacuberta, J.M. 1998. The evolutionary analysis of the Tnt1 retrotransposon in Nicotiana species reveals the high variability of its regulatory sequences. Mol. Biol. Evol. 15: 827–836.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leprince, A., Grandbastien, M. & Meyer, C. Retrotransposons of the Tnt1B family are mobile in Nicotiana plumbaginifolia and can induce alternative splicing of the host gene upon insertion. Plant Mol Biol 47, 533–541 (2001). https://doi.org/10.1023/A:1011846910918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011846910918

Navigation