Skip to main content
Log in

Tunneling Across an Inhomogeneous Delta-Barrier

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The authors deal with the tunneling of electrons across an inhomogeneous delta-barrier defined by the potential energy \(V\left( r \right) = \left[ {\eta + \mu \left( {x^2 + y^2 } \right)} \right]\delta \left( z \right)\) (where \(\eta >0\) and \(\mu >0\) are two constants). In particular, the perpendicular incidence of an electron with a given value \(k_0 \) of the wave vector \(k_0 = \left( {0,0,k_0 } \right)\)is considered. The electron is forward-scattered into the region behind the barrier (region 2: \(z >0\)), i. e. the wave function \(\psi _2 \left( r \right)\) is composed of plane waves with all wave vectors \(k_2 \) such that \(\left| {k_2 } \right| = k_0 \) and \(k_{2z} = \sqrt {k_{_0 }^2 - q^2 >\left. 0 \right)} \)) (where \(q = \left( {k_{2x} ,k_{2y} ,0} \right),q = \left| q \right|\)). Therefore, if \(z >0\), the wave function of the electron is represented as \(\psi _2 \left( r \right) = \int {d^2 qU_2 \left( q \right)\exp \left[ {{\text{i}}\left( {q.u + \sqrt {k_{_0 }^2 - q^2 } } \right)z} \right]} \), where \(u = \left( {x,y,0} \right)\). An approximate formula is derived for the amplitude \(U_2 \left( q \right)\). The authors pay a special attention to the flow density \(J_2 \left( r \right) = \left( {\hbar /m} \right)\operatorname{Im} \psi _{_2 }^* \left( r \right)\nabla \psi _2 \left( r \right)\) and calculate this function in two cases: 1. for the plane \(z = 0\) and 2. for high values of \(R = \left| r \right|\left( {z = R{cos}\vartheta ,{i}{.e}{.}\vartheta \in \left( {0,{\pi}/2} \right.} \right)\) is the diffraction angle). The authors discuss the relevance of their diffraction problem in a prospective quantum-mechanical theory of the tunneling of electrons across a randomly inhomogeneous Schottky barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Burstein and S. Lundqvist, Eds.: Tunneling phenomena in solids, Plenum Press, New York, 1969 (Russian translation: Mir, Moscow, 1973).

    Google Scholar 

  2. E. L. Wolf: Principles of electron tunneling spectroscopy, Oxford University Press, New York, 1985 (Russian translation: Naukova dumka, Kiev, 1990).

    Google Scholar 

  3. M. Ožvold: Phys. Status Solidi A 132 (1992) 517.

    Google Scholar 

  4. J. H. Werner and H. H. Güttler: J. Appl. Phys. 69 (1991) 1522.

    Google Scholar 

  5. R. T. Tung: Appl. Phys. Lett. 58 (1991) 2821.

    Google Scholar 

  6. J. P. Sullivan, R. T. Tung, M. R. Pinto, and W. R. Graham: J. Appl. Phys. 70 (1991) 7403.

    Google Scholar 

  7. R. T. Tung: Phys. Rev. B 45 (1992) 13509.

    Google Scholar 

  8. E. Dobročka and J. Osvald: Appl. Phys. Lett. 65 (1994) 575.

    Google Scholar 

  9. J. Osvald and E. Dobročka: Semicond. Sci. Technol 11 (1996) 1198.

    Google Scholar 

  10. J. Osvald: J. Appl. Phys. 85 (1999) 1935.

    Google Scholar 

  11. Zs. J. Horváth, A. Bosacchi, S. Franchi, E. Gombia, R. Mosca, and A. Motta: Materials Sci. Eng. B 28 (1994) 429.

    Google Scholar 

  12. Zs. Horváth, A. Bosacchi, S. Franchi. E. Gombia, R. Mosca and D. Biondelli: Vacuum 46 (1995) 959.

    Google Scholar 

  13. Zs. Horváth: Vacuum 46 (1995) 963.

    Google Scholar 

  14. F. A. Padovani: in Semicoductors and semimetals (Eds. R. K. Willardson and A. C. Beer), Vol. 7 (Applications and devices), Part A, Academic Press, New York, 1971, p. 75.

    Google Scholar 

  15. E. H. Rhoderick and R. H. Williams: Metal-semiconductor contacts, Clarendon Press, Oxford, 1988.

    Google Scholar 

  16. S. Flügge: Practical quantum mechanics I (Die Grundlagen der mathematischen Wissenschaften, Vol. 177), Springer, Berlin, 1971.

    Google Scholar 

  17. A. Galindo and B. Pascual: Quantum mechanics I, Springer, Berlin, 1990.

    Google Scholar 

  18. M. J. Goovaerts, A. Babcenko, and J. T. Devreese: J. Math. Phys. 14 (1973) 554.

    Google Scholar 

  19. A. Lacina: Czech. J. Phys. B 30 (1980) 668.

    Google Scholar 

  20. B. Gaveau and L. S. Shulman: J. Phys, Math. Gen. 19 (1986) 1833.

    Google Scholar 

  21. S. W. Lawande and K. V. Bhagvat: Phys. Lett. 131 (1988) 8.

    Google Scholar 

  22. S. M. Blinder: Phys. Rev. A 37 (1988) 973.

    Google Scholar 

  23. C. Grosche: J. Phys., Math. Gen. 23 (1990) 5205.

    Google Scholar 

  24. C. Grosche: Phys. Rev. Lett. 71 (1993) 1.

    Google Scholar 

  25. C. Grosche: Ann. Phys. 2 (1993) 557.

    Google Scholar 

  26. V. Bezák: Acta Physica Univ. Comenianae 36 (1995) 179.

    Google Scholar 

  27. V. Bezák: J. Math. Phys. 37 (1996) 5939.

    Google Scholar 

  28. V. Bezák: Czech. J. Phys. 47 (1997) 223.

    Google Scholar 

  29. V. Bezák: Czech. J. Phys. 47 (1997) 237.

    Google Scholar 

  30. I. Yanetka: Physica B 270 (1999).

  31. S. H. Patil: Am. J. Phys. 68 (2000) 712.

    Google Scholar 

  32. I. S. Gradshtein and I. M. Ryzhik: Tables of integrals,sum s, series and products, Nauka, Moscow, 1971, formula 6.532.4 (in Russian).

  33. M. Abramowitz and I. A. Stegun: Handbook of Mathematical Functions, Nauka, Moscow, 1979, Chapter 9 (in Russian).

  34. E. Jahnke, F. Emde, and F. Lösch: Tafeln höheren Funktionen, Teubner, Stuttgart, 1960, Chapter 13; (transl. Nauka, Moscow, 1964).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezák, V., Selim, M.M. Tunneling Across an Inhomogeneous Delta-Barrier. Czechoslovak Journal of Physics 51, 829–852 (2001). https://doi.org/10.1023/A:1011678501341

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011678501341

Navigation