Skip to main content
Log in

cDNA cloning of two isoforms of ornithine carbamoyltransferase from Canavalia lineata leaves and the effect of site-directed mutagenesis of the carbamoyl phosphate binding site

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The immunoscreening method was used to isolate cDNAs of 1323 bp (ClOCT1) and 1433 bp (ClOCT2) encoding two ornithine carbamoyltransferases (OCT, EC 2.1.3.3) from the cDNA expression library ofCanavalia lineata leaves constructed in a λZAP Express vector. ClOCT1 and ClOCT2 encode 359 and 369 amino acids, respectively. The N-terminals of deduced amino acid sequences of the two cDNAs showed typical features of the transit peptide of chloroplast targeting proteins. The ornithine-binding domain (FMHCLP) and catalytic domain (HPXQ) of ClOCT1 and ClOCT2 and the carbamoyl phosphate (CP)-binding site of ClOCT1 (SMRTR) are identical to OCTs of other plant species, pea and Arabidopsis thaliana. However, the CP-binding site sequence of ClOCT2, SLRTH, has not yet been reported. Both ClOCT1 and ClOCT2 cDNAs were expressed in Escherichia coli BL21 (DE3) by using expression vector pET30a. Recombinant ClOCT1 protein showed 14 times higher ornithine-dependent OCT activity than canaline-dependent OCT activity. In contrast, recombinant ClOCT2 protein showed 13 times higher canaline-dependent OCT activity than ornithine-dependent OCT activity. The two amino acids of the CP-binding site of ClOCT2 (SLRTH) were combinatorially changed to those of the CP-binding site of ClOCT1 (SMRTR) by site-directed mutagenesis. When Leu-118 of ClOCT2 was changed to Met, ornithine-dependent activity was increased significantly. It is assumed that the substrate specificity of ClOCT1 or ClOCT2 proteins partially depends on the amino acid sequence of the CP-binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birdsong, B.A., Alston, R. and Turner, B.L. 1960. Distribution of canavanine in the family Leguminosae as related to phyletic groupings. Can. J. Bot. 38: 499–505.

    Google Scholar 

  • Bollag, D.M. and Edelstein, S.J. 1991. Protein Methods. Wiley-Liss, New York.

    Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  Google Scholar 

  • De Gregorio, A., Risitano, A., Capo, C., Crinio, C., Petruzzelli, R. and Desideri, A. 1999. Evidence of carbamoylphosphate induced conformational changes upon binding to human ornithine carbamoyltransferase. Biochem. Mol. Biol. Int. 47: 965–970.

    PubMed  Google Scholar 

  • Eid, S., Waly, Y. and Abdelal, A.T. 1974. Separation and proper-ties of two ornithine carbamoyltransferase from Pisum sativum seedlings. Phytochemistry 13: 99–102.

    Google Scholar 

  • Glenn, E. and Maretzki, A. 1977. Properties and subcellular distribution of two partially purified ornithine transcarbamoylases in cell suspension of sugarcane. Plant Physiol. 60: 122–126.

    Google Scholar 

  • Goldsmith, J.O., Lee, S., Zambidis, I. and Kuo, L.C. 1991. Control of L-ornithine specificity in Escherichia coli ornithine transcarbamoylase. Site-directed mutagenic and pH studies. J. Biol. Chem. 266: 18626–18634.

    PubMed  Google Scholar 

  • Huygen, R., Crabeel, M. and Glansdorff, N. 1987. Nucleotide se-quence of the ARG3 gene of the yeast Saccharomyces cerevisiae encoding ornithine carbamoyltransferase. Comparison with other carbamoyltransferases. Eur. J. Biochem. 166: 371–377.

    PubMed  Google Scholar 

  • Hwang, I.D., Lee, Y., Kim, S.G. and Kwon, Y.M. 1996. Enzyme activities of canavanine metabolism in Canavalia lineata L. callus. J. Plant Physiol. 149: 494–500.

    Google Scholar 

  • Itoh, Y., Soldati, L., Stalon, V., Falmagne, P., Terawaki, Y., Leisinger, T. and Haas, D. 1988. Anabolic ornithine carbamoyltransferase of Pseudomonas aeruginosa: nucleotide sequence and transcriptional control of the arg F structural gene. J. Bact. 170: 2725–2734.

    PubMed  Google Scholar 

  • Kalousek, F., Orsulak, M.D. and Rosenberg, L.E. 1984. Newly processed ornithine transcarbamylase subunits are assembled to trimers in rat liver mitochondria. J. Biol. Chem. 259: 5392–5395.

    PubMed  Google Scholar 

  • Karlin-Neumann, G.A. and Tobin, E.M. 1986. Transit peptides of nuclear-encoded chloroplast proteins share a common amino acid framework. EMBO J. 5: 9–13.

    PubMed  Google Scholar 

  • Keegstra, K., Olsen, L.J. and Theg, S.M. 1989. Chloroplastic precursors and their transport across the envelope membranes. Annu. Rev. Plant Physiol. 40: 471–501.

    Google Scholar 

  • Kraus, J.P., Hodges, P.E., Williamson, C.L., Horwich, A.L., Kalousek, F., Williams, K.R. and Rosenberg, L.E. 1985. A cDNA clone for the precursor of rat mitochondrial ornithine tran-scarbamylase: comparison of rat and human leader sequences and conservation of catalytic sites. Nucl. Acids Res. 13: 943–952.

    PubMed  Google Scholar 

  • Kuo, L.C., Miller, A.W., Lee, S. and Kozuma, C. 1988. Site-directed mutagenesis of Eschericha coli ornithine transcarbamoylase: Role of arginine-57 in substrate binding and catalysis. Biochemistry 27: 8823–8832.

    PubMed  Google Scholar 

  • Kuo, L.C., Caron, C., Lee, S. and Herzberg, W. 1990. Zn 2 +regulation of ornithine transcarbamoylase. II. Metal binding site. J. Mol. Biol. 211: 271–280.

    PubMed  Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    PubMed  Google Scholar 

  • Langley, D.B., Templeton, M.D., Fields, B.A., Mitchell, R.E. and Collyer, C.A. 2000. Mechanism of inactivation of ornithine transcarbamoylase by N-delta-(N′-sulfodiaminophosphinyl)-L-ornithine: a true transition state analogue? Crystal structure and implications for catalytic mechanism. J. Biol. Chem. 275: 20012–20019.

    PubMed  Google Scholar 

  • Lee, Y. and Kwon, Y.M. 2000. Identification of an isoform of ornithine carbamoyltransferase that can effectively utilize canaline as a substrate from the leaves of Canavalia lineata. Plant Sci. 151: 145–151.

    PubMed  Google Scholar 

  • Lee, Y., Lee, C.B., Kim, S-G. and Kwon, Y.M. 1997. Purification and characterization of ornithine carbamoyltransferase from the chloroplasts of Canavalia lineata leaves. Plant Sci. 122: 217–224.

    Google Scholar 

  • Lee, Y., Jun, B.O., Kim, S-G. and Kwon, Y.M. 1998. Purification of ornithine carbamoyltransferase from kidney bean (Phaseolus vulgaris L.) leaves and comparison of the properties of the enzyme from canavanine-containing and-deficient plants. Planta 205: 375–379.

    PubMed  Google Scholar 

  • Melangeli, C., Rosenthal, G.A. and Dalman, D.L. 1997. The biochemical basis for L-canavanine tolerance by tobacco budworm Heliothis virescens (Noctuidae). Proc. Natl. Acad. Sci. USA 94: 2255–2260.

    PubMed  Google Scholar 

  • Miller, A.W. and Kuo, L.C. 1990. Ligand-induced isomerization of Escherichia coli ornithine transcarbamoylase. An ultraviolet difference analysis. J. Biol. Chem. 265: 15023–15027.

    PubMed  Google Scholar 

  • Moore, A.L., Wood, C.K. and Watts, F.Z. 1994. Protein import into plant mitochondria. Annu. Rev. Plant Physiol. 45: 545–575.

    Google Scholar 

  • Nakai, K. and Kanehisa, M. 1992. A knowledge base for prediction protein localization sites in eukaryotic cells. Genomics 14: 897–911.

    PubMed  Google Scholar 

  • Natelson, S., Koller, A., Tseng, H., Dods, R.F. 1977. Canaline carbamoyltransferase in human liver as part of a metabolic cycle in which guanidino compounds are formed. Clin. Chem. 23: 960–966.

    PubMed  Google Scholar 

  • O'Neal, T.D. 1975. Invitro synthesis of ureidohomoserine by an enzyme from jack bean (Canavalia ensiformis) leaves. Plant Physiol. 55: 975–977.

    Google Scholar 

  • Quesada, V., Ponce, M.R. and Micol, J.L. 1999. OTC and AUL1, two convergent and overlapping genes in the nuclear genome of Arabidopsis thaliana. FEBS Lett. 461: 101–106.

    PubMed  Google Scholar 

  • Rosenthal, G.A. 1977. Nitrogen allocation for L-canavanine synthesis and its relationship to chemical defense of the seed. Biochem. Syst. Ecol. 5: 219–220.

    Google Scholar 

  • Rosenthal, G.A. 1992. Purification and characterization of the higher plant enzyme L-canaline reductase. Proc. Natl. Acad. Sci. USA 89: 1780–1784.

    PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain termination inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    PubMed  Google Scholar 

  • Shi, D., Morizono, H., Ha, Y., Aoyagi, M., Tuchman, M. and Allewell, N.M. 1998. 1.85-Å Resolution crystal structure of human ornithine transcarbamoylase complex with N-phosphonoacetyl-L-ornithine. Catalytic mechanism and correlation with inherited deficiency. J. Biol. Chem. 273: 34247–34254.

    PubMed  Google Scholar 

  • Slocum, R.D. and Richardson, D.P. 1991. Purification and char-acterization of ornithine transcarbamylase from pea (Pisum sativum L.). Plant Physiol. 96: 262–268.

    PubMed  Google Scholar 

  • Slocum, R.D., Nichols, H.F. and Williamson, C.L. 2000. Purification and characterization of Arabidopsis ornithine transcarbamoylase (OTCase), a member of a distinct and evolutionarily conserved group of plant OTCases. Plant Physiol. Biochem. 38: 279–288.

    Google Scholar 

  • Spencer, P.W. and Titus, J.S. 1974. The occurrence and nature of or-nithine carbamoyltransferase in senescing apple leaf tissue. Plant Physiol. 54: 382–385.

    Google Scholar 

  • Swofford, D.L. 1993. PAUP: Phylogenetic analysis using parsimony, ver. 3.1.2. Illinois Natural History Survey, Champaign, IL.

    Google Scholar 

  • Wild, J.R. and Wales, M.E. 1990. Molecular evolution and genetic engineering of protein domains involving aspartate transcarbamoylase. Annu. Rev. Microbiol. 44: 193–218.

    PubMed  Google Scholar 

  • Williamson, C.L., Lake, M.R. and Slocum, R.D. 1996. Isolation and characterization of a cDNA encoding a pea ornithine transcarbamoylase (argF) and comparison with other transcarbamoylases. Plant Mol. Biol. 31: 1087–1092.

    Google Scholar 

  • Yu, G.H. and Kwon, Y.M. 1992. Alteration of arginase activity in leaf protoplasts of Canavalia lineata. Korean Biochem. J. 25: 196–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y., Choi, YA., Hwang, I.D. et al. cDNA cloning of two isoforms of ornithine carbamoyltransferase from Canavalia lineata leaves and the effect of site-directed mutagenesis of the carbamoyl phosphate binding site. Plant Mol Biol 46, 651–660 (2001). https://doi.org/10.1023/A:1011632927541

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011632927541

Navigation