Skip to main content
Log in

Nodal and Mixed Finite Elements for the Numerical Homogenization of 3D Permeability

  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The aim of upscaling is to determine equivalent homogeneous parameters at a coarse-scale from a spatially oscillating fine-scale parameter distribution. To be able to use a limited number of relatively large grid-blocks in numerical oil reservoir simulators or groundwater models, upscaling of the permeability is frequently applied. The spatial fine-scale permeability distribution is generally obtained from geological and geostatistical models. After upscaling, the coarse-scale permeabilities are incorporated in the relatively large grid-blocks of the numerical model. If the porous rock may be approximated as a periodic medium, upscaling can be performed by the method of homogenization. In this paper the homogenization is performed numerically, which gives rise to an approximation error. The complementarity between two different numerical methods – the conformal-nodal finite element method and the mixed-hybrid finite element method – has been used to quantify this error. These two methods yield respectively upper and lower bounds for the eigenvalues of the coarse-scale permeability tensor. Results of 3D numerical experiments are shown, both for the far field and around wells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Arbogast, M.F. Wheeler and I. Yotov, Mixed finite elements for elliptic problems with tensor coef-ficients as cell-centered finite differences, SIAM J. Numer. Anal. 34(2) (1997) 828–852.

    Google Scholar 

  2. D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér. 19 (1985) 7–32.

    Google Scholar 

  3. J.-L. Auriault, Effective macroscopic description for heat conduction in periodic composites, Internat. J. Heat Mass Transfer 26(6) (1983) 861–869.

    Google Scholar 

  4. J. Bear, Dynamics of Fluids in Porous Media(Dover, New York, 1972).

    Google Scholar 

  5. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures(North-Holland, Amsterdam, 1978).

    Google Scholar 

  6. A. Bossavit, Computational Electromagnetism(Academic Press, San Diego, 1998).

    Google Scholar 

  7. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods(Springer, New York, 1991).

    Google Scholar 

  8. H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids(Oxford Univ. Press, Oxford, 1959).

    Google Scholar 

  9. C.M. Case, Physical Principles of Flow in Unsaturated Porous Media(Oxford Univ. Press, New York,1994).

    Google Scholar 

  10. F. Chatelin, Spectral Approximation of Linear Operators(Academic Press, New York, 1983).

    Google Scholar 

  11. J. Douglas, Jr., M. Peszy´nska and R.E. Showalter, Single phase flow in partially fissured media, Transport Porous Media 28 (1997) 285–306.

    Google Scholar 

  12. M.E. Gurtin, Variational principles for linear initial value problems, Quart. Appl. Math. 22(3) (1964) 252–256.

    Google Scholar 

  13. U. Hornung, Homogenization and Porous Media(Springer, Berlin, 1997).

    Google Scholar 

  14. E.F. Kaasschieter, Preconditioned conjugate gradients for solving singular systems, J. Comput. Appl. Math. 24 (1988) 265–275.

    Google Scholar 

  15. E.F. Kaasschieter and A.J.M. Huijben, Mixed-hybrid finite elements and streamline computations for the potential flow problem, Numer. Methods Partial Differential Equations 8 (1992) 221–226.

    Google Scholar 

  16. P.R. King, The use of renormalization for calculating effective permeability, Transport Porous Media 4 (1987) 37–58.

    Google Scholar 

  17. C. Lanczos, The Variational Principles of Mechanics(Dover, New York, 1970).

    Google Scholar 

  18. J.A. Meijerink and H.A. Van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comp. 31 (1977) 148–162.

    Google Scholar 

  19. Ph.M. Morse and H. Feshbach, Methods of Theoretical Physics(McGraw-Hill, New York, 1953).

    Google Scholar 

  20. J.C. Nédélec, Mixed finite elements in R3, Numer. Math. 35 (1980) 315–341.

    Google Scholar 

  21. M. Panfilov, Macroscale Models of Flow Through Heterogeneous Porous Media(Kluwer Academic, Dordrecht, 2000).

    Google Scholar 

  22. M. Peszy´nska, On a model of nonisothermal flow through fissured media, Differential and Integral Equations 8(6) (1995) 1497–516.

    Google Scholar 

  23. R.A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, in: Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics, Vol. 606 (Springer, New York, 1977) pp. 292–315.

    Google Scholar 

  24. R.F. Ribeiro and R.K Romeu, Computing the effective permeability by finite differences, finite elements, and mixed-hybrid finite elements (1997).

  25. E. Sanchez-Palencia, Non-homogeneous media and vibration theory, in: Lecture Notes in Physics, Vol. 127 (Springer, Berlin, 1980).

    Google Scholar 

  26. G. Strang and G.J. Fix, An Analysis of the Finite Element Method(Prentice-Hall, Englewood Cliffs, NJ, 1973).

    Google Scholar 

  27. A. Trykozko, Analyse de quelques méthodes de maillage adaptif, Électricité de France, Document HI-72/7715, Clamart, France (1991).

    Google Scholar 

  28. A. Weinstein and W. Stenger, Methods of Intermediate Problems for Eigenvalues(Academic Press, New York, 1972).

    Google Scholar 

  29. A. Weiser and M.F. Wheeler, On convergence of block-centered finite-differences for elliptic problems, SIAM J. Numer. Anal. 25 (1988) 351–375.

    Google Scholar 

  30. W. Zijl and M. Nawalany, Natural Groundwater Flow(CRC/Lewis, Boca Raton, FL, 1993).

    Google Scholar 

  31. W. Zijl and A. Trykozko, Numerical homogenization of the absolute permeability using the conformal-nodal and the mixed-hybrid finite element method, Transport Porous Media (2001) in press.

  32. W. Zijl and A. Trykozko, Numerical homogenization of the absolute permeability tensor around wells(2001) submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trykozko, A., Zijl, W. & Bossavit, A. Nodal and Mixed Finite Elements for the Numerical Homogenization of 3D Permeability. Computational Geosciences 5, 61–84 (2001). https://doi.org/10.1023/A:1011621529611

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011621529611

Navigation