Skip to main content
Log in

Unstructured grid adaptation for multiscale finite volume method

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The multiscale finite volume (MSFV) method produces non-monotone solutions in the presence of highly heterogeneous and channelized permeability fields, or in media with impermeable barriers. The accuracy of the MSFV method can be significantly improved by generating adapted coarse grids according to the fine-scale permeability field. This paper presents efficient algorithms for generating adaptive unstructured primal and dual coarse grids based on permeability features to efficiently improve the MSFV results. The primal coarse grid is generated based on a multilevel tabu search algorithm and its boundaries are adapted to reduced non-physical coarse-scale transmissibilities. Adaptive dual coarse grid is generated based on Dijkstra’s routing algorithm. The performance of the proposed algorithms is assessed for challenging test cases with highly heterogeneous and channelized permeability fields as well as impermeable shale layers. Numerical results show that permeability-adapted coarse grids significantly improve the accuracy of the MSFV method for simulation of multiphase flow in highly heterogeneous porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)

    Article  Google Scholar 

  2. Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Methods. Theory and Applications. Springer New York, New York, NY (2009)

    Google Scholar 

  3. Arbogast, T.: Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow. Comput. Geosci. 6, 453–481 (2002)

    Article  Google Scholar 

  4. Chen, Z.M., Hou, T.Y.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72, 541–576 (2003)

    Article  Google Scholar 

  5. Aarnes, J.E., Kippe, V., Lie, K.A.: Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels. Adv Water Res. 28(3), 257–271 (2005)

    Article  Google Scholar 

  6. Aarnes, J.E., Efendiev, Y.: An adaptive multiscale method for simulation of fluid flow in heterogeneous porous media. Multiscale Model. Simul. 5, 918–939 (2006)

    Article  Google Scholar 

  7. Aarnes, J.E., Efendiev, Y., Jiang, L.: Mixed multiscale finite element methods using limited global information. Multiscale Model. Simul. 7, 655–676 (2008)

    Article  Google Scholar 

  8. Jenny, P., Lee, S.H., Tchelepi, H.A.: Multiscale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187, 47–67 (2003)

    Article  Google Scholar 

  9. Jenny, P., Lee, S.H., Tchelepi, H.A.: Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media. J. Comput. Phys. 217(2), 627–641 (2006)

    Article  Google Scholar 

  10. Lunati, I., Jenny, P.: Multiscale finite-volume method for compressible multiphase flow in porous media. J. Comput. Phys. 216(2), 616–636 (2006)

    Article  Google Scholar 

  11. Lee, S.H., Wolfsteiner, C., Tchelepi, H.A.: Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three-phase flow with gravity. Comput. Geosci. 12(3), 351–366 (2008)

    Article  Google Scholar 

  12. Lunati, I., Jenny, P.: Multiscale finite-volume method for density-driven flow in porous media. Comput. Geosci. 12(3), 337–350 (2008)

    Article  Google Scholar 

  13. Hesse, M.A., Mallison, B.T., Tchelepi, H.A.: Compact multiscale finite volume method for heterogeneous anisotropic elliptic equations. Multiscale Model. Simul. 7, 934–962 (2008)

    Article  Google Scholar 

  14. Zhou, H., Tchelepi, H.A.: Operator-based multiscale method for compressible flow. SPE J. 13, 267–273 (2008)

    Article  Google Scholar 

  15. Jenny, P., Lunati, I.: Modeling complex wells with the multi-scale finite-volume method. J. Comput. Phys. 228(3), 687–702 (2009)

    Article  Google Scholar 

  16. Lunati, I., Lee, S.H.: An operator formulation of the multiscale finite-volume method with correction function. Multiscale Model Simul. 8(1), 96–109 (2009)

    Article  Google Scholar 

  17. Hajibeygi, H., Bonfigli, G., Hesse, M.A., Jenny, P.: Iterative multiscale finite-volume method. J. Comput. Phys. 227, 8604–8621 (2008)

    Article  Google Scholar 

  18. Hajibeygi, H., Jenny, P.: Multiscale finite-volume method for parabolic problems arising from compressible multiphase flow in porous media. J. Comput. Phys. 228, 5129–5147 (2009)

    Article  Google Scholar 

  19. Lunati, I., Tyagi, M., Lee, S.H.: An iterative multiscale finite volume algorithm converging to the exact solution. J. Comput. Phys. 230, 1849–1864 (2011)

    Article  Google Scholar 

  20. Hajibeygi, H., Jenny, P.: Adaptive iterative multiscale finite volume method. J. Comput. Phys. 230, 628–643 (2011)

    Article  Google Scholar 

  21. Zhou, H., Tchelepi, H.A.: Two-stage algebraic multiscale linear solver for highly heterogeneous reservoir models. SPE J. 17, 523–539 (2012)

    Article  Google Scholar 

  22. Wang, Y., Hajibeygi, H., Tchelepi, H.A.: Algebraic multiscale solver for flow in heterogeneous porous media. J. Comput. Phys. 259, 284–303 (2014)

    Article  Google Scholar 

  23. Moyner, O., Lie, K.A.: The multiscale finite volume method on unstructured grids. SPE J. 19, 816–831 (2014)

    Article  Google Scholar 

  24. Cortinovis, D., Jenny, P.: Iterative Galerkin-enriched multiscale finite-volume method. J. Comput. Phys. 277, 248–267 (2014)

    Article  Google Scholar 

  25. Cortinovis, D., Jenny, P.: Zonal multiscale finite-volume framework. J. Comput. Phys. 337, 84–97 (2017)

    Article  Google Scholar 

  26. Moyner, O., Lie, K.A.: A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids. J. Comput. Phys. 304, 46–71 (2016)

    Article  Google Scholar 

  27. Bosma, S., Hajibeygi, H., Tene, M., Tchelepi, H.A.: Multiscale finite volume method for discrete fracture modeling on unstructured grids (MS-DFM). J. Comput. Phys. 351, 145–164 (2017). https://doi.org/10.1016/j.jcp.2017.09.032

    Article  Google Scholar 

  28. J. Wallis, H.A. Tchelepi, Apparatus, method and system for improved reservoir simulation using an algebraic cascading class linear solver, U.S. Patent No.7684967, 2010

  29. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. J. Parallel Distributed Comput. 48, 96–129 (1998)

    Article  Google Scholar 

  30. Walshaw, C., Cross, M.: JOSTLE: parallel multilevel graph-partitioning software – an overview. In: Magoules, F. (ed.) Mesh Partitioning Techniques and Domain Decomposition Techniques, pp. 27–58. Civil-Comp Ltd., Kippen, Stirlingshire, Scotland (2007)

    Google Scholar 

  31. Chevalier, C., Pellegrini, F.: PT-SCOTCH: a tool for efficient parallel graph ordering. Parallel Comput. 34(6–8), 318–331 (2008)

    Article  Google Scholar 

  32. Giotis, A.P., Giannakoglou, K.C.: An unstructured grid partitioning method based on genetic algorithms. Adv. Eng. Softw. 29(2), 129–138 (1998)

    Article  Google Scholar 

  33. Korosec, P., Silc, J., Robic, B.: Solving the mesh-partitioning problem with an ant-colony algorithm. Parallel Comput. 30(5/6), 785–801 (2004)

    Article  Google Scholar 

  34. Liu, P., Wang, C.: A bubble-inspired algorithm for finite element mesh partitioning. Int. J. Numer. Meth. Engng. 93(7), 770–794 (2013)

    Article  Google Scholar 

  35. Walshaw, C., Cross, M.: Mesh partitioning: a multilevel balancing and refinement algorithm. SIAM J. Sci. Comput. 22, 63–80 (2000)

    Article  Google Scholar 

  36. B. Hendrickson, R. Leland, A multilevel algorithm for partitioning graphs. Proceedings of the 1995 ACM/IEEE conference on supercomputing, New York: 1995

  37. Glover, F., Laguna, M.: Tabu Search. Boston, Kluwer Academic Publishers (1997)

    Book  Google Scholar 

  38. Christie, M., Blunt, M.: Tenth SPE comparative solution project: a comparison of upscaling techniques. SPE Reserv. Evaluat. Eng. 4(4), 308–317 (2001)

    Article  Google Scholar 

  39. Wang, Y., Hajibeygi, H., Tchelepi, H.A.: Monotone multiscale finite volume method. Comput. Geosci. 20, 509–524 (2016)

    Article  Google Scholar 

  40. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Mehrdoost.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrdoost, Z. Unstructured grid adaptation for multiscale finite volume method. Comput Geosci 23, 1293–1316 (2019). https://doi.org/10.1007/s10596-019-09878-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-019-09878-9

Keywords

Navigation