Skip to main content
Log in

Tissue-specific and developmental-specific expression of an Arabidopsis thaliana gene encoding the lipoamide dehydrogenase component of the plastid pyruvate dehydrogenase complex

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We describe an Arabidopsis thaliana gene, ptlpd2, which codes for a protein with high amino acid similarity to lipoamide dehydrogenases (LPDs) from diverse species. Ptlpd2 codes for a precursor protein possessing an N-terminal extension predicted to be a plastid-targeting signal. Expression of the ptlpd2 cDNA in Escherichia coli showed the encoded protein possessed the predicted LPD activity. PTLPD2 protein, synthesized in vitro, was efficiently imported into isolated chloroplasts of Pisum sativum and shown to be located in the stroma. In addition, fusion proteins containing the predicted transit peptide of PTLPD2 or the entire protein fused at the N-terminus with the green fluorescent protein (GFP), showed accumulation in vivo in chloroplasts but not in mitochondria of A. thaliana. Expression of ptlpd2 was investigated by introducing ptlpd2 promoter-β-glucuronidase (GUS) gene fusions into Nicotiana tabacum. GUS expression was observed in seeds, flowers, root tips and young leaves. GUS activity was highest in mature seeds, decreased on germination and increased again in young leaves. Expression was also found to be temporally regulated in pollen grains where it was highest in mature grains at dehiscence. Database searches on ptlpd2 sequences identified a second A. thaliana gene encoding a putative plastidial LPD and two genes encoding proteins with high similarity to the mitochondrial LPD of P. sativum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.

    Article  PubMed  Google Scholar 

  • Bao, X., Focke, M., Pollard, M. and Ohlrogge, J. 2000. Understanding in vivo carbon precursor supply for fatty acid biosynthesis in leaf tissue. Plant J. 22: 39–50.

    PubMed  Google Scholar 

  • Benen, J.A.E., van Berkel, W.J.H., Veeger, C. and de Kok, A. 1992. Lipoamide dehydrogenase from Azotobacter vinelandii:the role of the C-terminus in catalysis and dimer stabilization. Eur. J. Biochem. 207: 495–505.

    Google Scholar 

  • Bevan, M. 1984. Binary Agrobacterium vectors for plant transformation. Nucl. Acids Res. 12: 8711–8721.

    PubMed  Google Scholar 

  • Bevan, M., Bancroft, I., Bent, E. et al. 1998. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391: 485–488.

    PubMed  Google Scholar 

  • Bourguignon, J., Macheral, D., Neuberger, M. and Douce, R. 1992. Isolation, characterization and sequence analysis of a cDNA clone encoding L-protein, the dihydrolipoamide dehydrogenase component of the glycine cleavage system from pea-leaf mitochondria. Eur. J. Biochem. 204: 865–873.

    PubMed  Google Scholar 

  • Bourguignon, J., Merand, V., Rawsthorne, S., Forest, E. and Douce, R. 1996. Glycine decarboxylase and pyruvate dehydrogenase complexes share the same dihydrolipoamide dehydrogenase in pea leaf mitochondria: evidence from mass spectrometry and primary-structure analysis. Biochem. J. 313: 229–234.

    PubMed  Google Scholar 

  • Bowman, S.B., Zaman, Z. Collinson, L.P., Brown, A.J. and Dawes, I.W. 1992. Positive regulation of the LPD1 gene of Saccharomyces cerevisiae by the HAP2/HAP3/HAP4 activation system. Mol. Gen. Genet. 231: 296–303.

    Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–255.

    Article  PubMed  Google Scholar 

  • Busk, P.K. and Pagès, M. 1998. Regulation of abscisic acid-induced transcription. Plant Mol. Biol. 37: 425–435.

    PubMed  Google Scholar 

  • Camp, P.J. and Randall, D.D. 1985. Purification and characterization of the pea chloroplast pyruvate dehydrogenase complex. Plant Physiol. 77: 571–577.

    Google Scholar 

  • Conner, M., Krell, T. and Lindsay, J.G. 1996. Identification and purification of a distinct dihydrolipoamide dehydrogenase from pea chloroplasts. Planta 200: 195–202.

    PubMed  Google Scholar 

  • Dastoor, F.P., Forrest, M.E. and Beatty, J.T. 1997. Cloning, se-quencing and oxygen regulation of the Rhodobacter capsulatus alpha-ketoglutarate dehydrogenase operon. J. Bact. 179: 4559–4566.

    PubMed  Google Scholar 

  • Davis, S.J. and Vierstra, R.D. 1998. Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol. Biol. 36: 521–528.

    Article  PubMed  Google Scholar 

  • Denyer, K. and Smith, A.M. 1988. The capacity of plastids from developing pea cotyledons to synthesize acetyl-CoA. Planta 173: 172–182.

    Google Scholar 

  • Emanuelsson, O., Nielsen, H. and von Heijn, G. 1999. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 8: 978–984.

    PubMed  Google Scholar 

  • Engels, A. and Pistorius, E.K. 1997. Characterization of a gene encoding dihydrolipoamide dehydrogenase of the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiology 143: 3543–3553.

    PubMed  Google Scholar 

  • Faure, M., Bourguignon, J., Neuburger, M., Macherel, D., Sieker, L., Ober, R., Kahn, R., Cohen-Addad, C. and Douce, R. 2000. Interaction between the lipoamide-containing H-protein and the lipoamide dehydrogenase (L-protein) of the glycine de-carboxylase multienzyme system. 2. Crystal structures of H-and L-proteins. Eur. J. Biochem. 267: 2890–2898.

    PubMed  Google Scholar 

  • Foster, R., Izawa, T. and Chua N.H. 1994. Plant b-ZIP proteins gather at AGCT elements. FASEB J. 8: 192–200.

    PubMed  Google Scholar 

  • Gavel, Y. and von Heijne, G. 1990. A conserved cleavage-site motif in chloroplast transit peptides. FEBS Lett. 261: 455–458.

    PubMed  Google Scholar 

  • Gray, M.W. 1999. Evolution of organellar genomes. Curr. Opin. Genet. Dev.9: 678–687.

    PubMed  Google Scholar 

  • Harwood, J.L. 1996. Recent advances in biosynthesis of fatty acids. Biochim. Biophys. Acta 1301: 7–56.

    PubMed  Google Scholar 

  • Hibberd, J.M, Linley, P.J., Khan, M.S. and Gray, J.C. 1998. Transient expression of green fluorescent protein in various plastid types following microprojectile bombardment. Plant J. 16: 627–632.

    Google Scholar 

  • Higo, K., Ugawa, T., Iwamoto, M. and Higo, H. 1998. PLACE: a database of plant cis-acting regulatory DNA elements. Nucl. Acids Res. 26: 358–359.

    PubMed  Google Scholar 

  • Horsch, R.B., Fry, J.E., Hoffman, N.L., Eicholtz, D., Rogers, S.G. and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science227: 1229–1231.

    Google Scholar 

  • Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.

    PubMed  Google Scholar 

  • Johnston, M.L., Luethy, M.H., Miernyk, J.A. and Randall, D.D. 1997. Cloning and molecular analyses of the Arabidopsis thaliana plastid pyruvate dehydrogenase subunits. Biochim. Biophys. Acta 1321: 200–206.

    PubMed  Google Scholar 

  • Johnston, M.L., Miernyk J.A. and Randall, D.D. 2000. Import, processing, and assembly of the α-and β-subunits of chloroplast pyruvate dehydrogenase. Planta 211: 72–76.

    PubMed  Google Scholar 

  • Kang, F. and Rawsthorne, S. 1994. Starch and fatty acid synthesis in plastids from developing embryos of oilseed rape (Brassica napus L.). Plant J. 6: 795–805.

    Google Scholar 

  • Ke, J., Behal, R.H., Back, S.L., Nikolau, B.J., Wurtele, E.S. and Oliver, D.J. 2000. The role of pyruvate dehydrogenase and acetyl-coenzyme A synthase in fatty acid synthesis in developing Arabidopsis seeds. Plant Physiol. 123: 497–508.

    PubMed  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J. Mol. Evol. 16: 111–120.

    PubMed  Google Scholar 

  • Lutziger, I. and Oliver, D.J. 2000. Molecular evidence of a unique lipoamide dehydrogenase in plastids: analysis of plastidic lipoamide dehydrogenase from Arabidopsis thaliana. FEBS Lett. 484: 12–16.

    PubMed  Google Scholar 

  • Mattevi, A., Schierbeek, A.J. and Hol, W.G. 1991. The refined crystal structure of Azotobacter vinelandii lipoamide dehydrogenase at 2.2 Å resolution. A comparison with the structure of glutathione reductase. J. Mol. Biol. 220: 974–995.

    Google Scholar 

  • Mattevi, A., Obmolova, G., Kalk, K.H., van Berkel, W.J. and Hol, W.G. 1993. Three-dimensional structure of lipoamide dehydrogenase from Pseudomonas fluorescens at 2.8 Å resolution. Analysis of redox and thermostability properties. J. Mol. Biol. 230: 1200–1215.

    PubMed  Google Scholar 

  • Mooney, B.P., Miernyk, J.A. and Randall, D.D. 1999. Cloning and characterization of the dihydrolipoamide S-acetyltransferase subunit of the plastid pyruvate dehydrogenase complex (E2) from Arabidopsis. Plant Physiol. 120: 443–452.

    PubMed  Google Scholar 

  • Mould, R.M. and Gray, J.C.1998a. Preparation of chloroplasts for protein synthesis and protein import. In: J.E. Celis (Ed.) Cell Biology: A Laboratory Handbook, vol. 2, Academic Press, New York, pp. 81–86.

    Google Scholar 

  • Mould, R.M. and Gray, J.C. 1998b. Import of nuclear-encoded proteins by isolated chloroplasts and thylakoids. In: J.E. Celis (Ed.) Cell Biology: A Laboratory Handbook, vol. 2, Academic Press, New York, pp. 286–292.

    Google Scholar 

  • Nakai, K. and Kanehisa, M. 1992. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 14: 897–911.

    Google Scholar 

  • Patel, M.S. and Roche, T.E. 1990. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 4: 3224–3233.

    PubMed  Google Scholar 

  • Stevens R.G., Creissen, G.P. and Mullineaux, P.M. 1997. Cloning and characterization of a cytosolic glutathione reductase cDNA from pea (Pisum sativum L.) and its expression in response to stress. Plant Mol. Biol. 35: 641–654.

    Google Scholar 

  • Tatusova, T.A. and Madden, T.L. 1999. BLAST 2 sequences: a new tool for comparing protein and nucleotide sequences. FEMS Microbiol. Lett. 174: 247–250.

    Article  PubMed  Google Scholar 

  • Taylor, A.E., Cogdell, R.J. and Lindsay, J.G. 1992. Immunological comparison of the pyruvate dehydrogenase complexes from pea mitochondria and chloroplasts. Planta 188: 225–231.

    Google Scholar 

  • Toyoda, T., Suzuki, K., Sekiguchi, T., Reed, L.J. and Takaneka, A. 1998. Crystal structure of eukaryotic E3, lipoamide dehydrogenase from yeast. J. Biochem. 123: 668–674.

    PubMed  Google Scholar 

  • Twell, D., Yamaguchi, J., Wing, R.A., Ushiba, J. and McCormick, S. 1991. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev. 5: 496–507.

    PubMed  Google Scholar 

  • Zaman, Z., Bowman, S.B., Kornfeld, G.D., Brown, A.J. and Dawes, I.W. 1999. Transcription factor GCN4 for control of amino acid biosynthesis also regulates the expression of the gene for lipoamide dehydrogenase. Biochem. J. 340: 855–862.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drea, S.C., Mould, R.M., Hibberd, J.M. et al. Tissue-specific and developmental-specific expression of an Arabidopsis thaliana gene encoding the lipoamide dehydrogenase component of the plastid pyruvate dehydrogenase complex. Plant Mol Biol 46, 705–715 (2001). https://doi.org/10.1023/A:1011612921144

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011612921144

Navigation