Skip to main content
Log in

Numerical solution of nonlinear equations in chemical speciation calculations

  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Speciation calculations involve the computation of the concentration of each individual chemical species in a multicomponent–multiphase chemical system. The numerical problem is to solve a system of coupled linear and nonlinear equations subject to the constraint that all unknowns are positive. The performance and accuracy of a series of nonlinear equation solvers are evaluated: A quasi-Newton method with the global step determined by different line search and trust region algorithms, the conjugate gradient method with the global step determined by line search, and the solvers in the codes TENSOLVE, CONMIN and LBFGS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.M. Anderson and D.A. Crerar, Thermodynamics in Geochemistry, the Equilibrium Model (Oxford University Press, 1993).

  2. O. Axelsson, Iterative Solution Methods (Cambridge University Press, Cambridge, 1996).

    MATH  Google Scholar 

  3. R.L. Bassett and D.C. Melchior, Chemical modeling of aqueous systems, an overview, in: Chemical Modelling of Aqueous Systems II, eds. D.C. Melchior and R.L. Bassett, ACS Symp. Series, Vol. 416 (1990) pp. 1–14.

  4. C.M. Bethke, Geochemical Reaction Modeling (Oxford University Press, 1996).

  5. A. Bouaricha and R.B. Schnabel, Algorithm 768: TENSOLVE: A software package for solving systems of nonlinear equations and nonlinear least-squares problems using tensor methods, ACM Trans. Math. Software 23(2) (1997) 174–195.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Bouaricha and R.B. Schnabel, The TENSOLVE code, anonymous ftp info.mcs.anl.gov, directory/pub/TENSOR/TENSOLVE or http://www.netlib.org/toms/768.

  7. G. Delic and M.F. Wheeler, eds., Next Generation Environmental Models and Computational Methods (SIAM, Philadelphia, PA, 1997).

    Google Scholar 

  8. J.E. Dennis Jr. and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Clifs, NJ, 1983).

    MATH  Google Scholar 

  9. P.K. Egeberg, Examples of formation water analysis, private communication.

  10. P.K. Egeberg and P. Aagaard, Origin and evaluation of formation waters from oil fields on the Norwegian Shelf, Appl. Geochem. 4 (1989) 131–142.

    Article  Google Scholar 

  11. H.C. Helgeson and D.H. Kirkham, Theoretical prediction of the thermodynamic behaviour of aqueous electrolytes at high pressures and temperatures: I. Summary of the thermodynamic/electrostatic properties of the solvent, Amer. J. Sci. 274 (1974) 1089–1198.

    Article  Google Scholar 

  12. A. Holstad, A mathematical and numerical model for reactive fluid flow systems, Computational Geosciences (1999) submitted for publication.

  13. F. Lampariello, L. Grippo and S. Lucidi, A class of nonmonotone stabilization methods in unconstrained optimization, Numer. Math. 59 (1991) 779–805.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Langmuir, Aqueous Environmental Geochemistry (Prentice-Hall, Englewood Clifs, NJ, 1997).

    Google Scholar 

  15. P.C. Lichtner, Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems, Geochim. Cosmochim. Acta 49 (1985) 779–800.

    Article  Google Scholar 

  16. D.C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Programming 45 (1989) 503–528.

    Article  MATH  MathSciNet  Google Scholar 

  17. D.C. Liu and J. Nocedal, The LBFGS code, anonymous ftp ece.nwu.edu, directory pub/lbfgs/lbfgs_um.

  18. S. Lucidi, Code for nonmonotone line search, private communication (1998).

  19. D.G. Luenberger, Introduction to Linear and Nonlinear Programming (Addison-Wesley, Reading, MA, 1973).

    MATH  Google Scholar 

  20. D.C. Mangold and C.-F. Tsang, A summary of subsurface hydrological and hydrochemical models, Rev. Geophys. 29(1) (1991) 51–79.

    Google Scholar 

  21. J.J. Moré and J. Thuente, Line search algorithms with guaranteed sufficient decrease, ACM Trans. Math. Software 20(3) (1994) 286–307.

    Article  MATH  MathSciNet  Google Scholar 

  22. J.J. Moré and J. Thuente, The MINPACK-2 code, anonymous ftp info.mcs.anl.gov, directory pub/MINPACK-2.

  23. W. Murray, P.E. Gill and M.H. Wright, Practical Optimization (Academic Press, New York, 1981).

    MATH  Google Scholar 

  24. A. Neumaier, On convergence and restart conditions for nonlinear conjugate gradient method, Preprint, http://solon.cma.univie.ac.at/~neum (1998).

  25. A. Neumaier, F77 code for efficient line search, private communication, neum@cma.univie.ac.at, http://solon.cma.univie.ac.at/~neum (1998).

  26. D.K. Nordstrom et al., A comparison of computerized chemical models for equilibrium calculations in aqueous systems, in: Chemical Modeling of Aqueous Systems, ed. E.A. Jenne, ACS Symp. Series, Vol. 93 (1979) pp. 857–892.

  27. J.M. Ortega and C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970).

    MATH  Google Scholar 

  28. M.J.D. Powell, Restart procedures for the conjugate gradient method, Math. Programming 12 (1977) 241–254.

    Article  MATH  MathSciNet  Google Scholar 

  29. R.B. Schnabel, D. Feng and P. Frank, An analysis of tensor methods for nonlinear equations, Technical Report CS-CS-729–94, Department of Computer Science, University of Colorado at Boulder (1992).

  30. R.B. Schnabel and P.D. Frank, Tensor methods for nonlinear equations, SIAM J. Numer. Anal. 21 (1984) 815–843.

    Article  MATH  MathSciNet  Google Scholar 

  31. D.F. Shanno and K.H. Phua, ALGORITHM 500: Minimization of unconstrained multivariate functions, ACM Trans. Math. Software 2(1) (1976) 87–94.

    Article  MATH  MathSciNet  Google Scholar 

  32. D.F. Shanno and K.H. Phua, Remark on algorithm 500, ACM Trans. Math. Software 6(4) (1980) 618–622.

    Article  Google Scholar 

  33. D.F. Shanno and K.H. Phua, The CONMIN code, http://www.netlib.org/toms/500.

  34. W.R. Smith, Y. Jiang and G.R. Chapman, Global optimality conditions and their geometric interpretation for the chemical and phase equilibrium problem, SIAM J. Optimization 5(4) (1995) 813–834.

    Article  MATH  MathSciNet  Google Scholar 

  35. C.I. Steefel, P.C. Lichtner and E.H. Oelkers, eds., Reactive Transport in Porous Media, Reviews in Mineralogy, Vol. 34 (Mineralogical Society of America, 1996).

  36. W. Stumm and J.J. Morgan, Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters (Wiley, New York, 1996).

    Google Scholar 

  37. A.H. Truesdell and B.F. Jones, WATEQ, a computer program for calculating chemical equilibria of natural waters, U.S. Geol. Survey J. Res. 2 (1974) 233–248.

    Google Scholar 

  38. E.A. Warren and P.C. Smalley, North Sea Formation Waters Atlas (The Geological Society, London, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holstad, A. Numerical solution of nonlinear equations in chemical speciation calculations. Computational Geosciences 3, 229–257 (1999). https://doi.org/10.1023/A:1011595429513

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011595429513

Navigation