Skip to main content
Log in

Progress in Aqueous Solution Modelling: Better Data and Better Interfaces

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The Joint Expert Speciation System (JESS) is presently the world’s largest single source of thermodynamic information about aqueous electrolyte solutions. Comprehensive and up-to-date thermodynamic models undoubtedly require such large databases but size alone, without well-designed data structures and good data assessment procedures, is insufficient. Computer databases are not like tables in a book; they should be constantly evolving, easy to search and specifically designed for processing by large-scale, automated facilities, including tests for careless errors and internal consistency. The maxim ‘garbage in, garbage out’ is today even more relevant than ever: without expert analysis and critical judgement, limitless storage capacity and computational power are likely just to add confusion rather than achieve meaningful insights into chemical problems. Several examples are provided to demonstrate the application of new methodologies to problems of differing size and complexity including harmonization of aqueous reaction equilibrium constants for more than 50,000 chemical species, systematic critical assessment of the thermophysical properties of aqueous glycine and its solid–liquid equilibria over wide ranges of temperature and pressure, and development of standalone programs for users lacking training in chemical speciation problems. Extension of these methods to new applications is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. May, P.M., Murray, K.: JESS, a Joint Expert Speciation System—I. Raison d’Etre. Talanta 38, 1409–1417 (1991)

    Article  CAS  PubMed  Google Scholar 

  2. May, P.M., Murray, K.: Database of chemical reactions designed to achieve thermodynamic consistency automatically. J. Chem. Eng. Data 46, 1035–1040 (2001)

    Article  CAS  Google Scholar 

  3. May, P.M., Rowland, D.: Thermodynamic modeling of aqueous electrolyte systems: current status. J. Chem. Eng. Data 62, 2481–2495 (2017)

    Article  CAS  Google Scholar 

  4. Linke, W.F.: Solubilities, Inorganic and Metal–Organic Compounds, Vol. 2. A Revision and Continuation of the Compilation Originated by Atherton Seidell, Ph.D. US National Institutes of Health. American Chemical Society (1965)

  5. Lemire, R.J., Berner, U., Musikas, C., Palmer, D.A., Taylor, P., Tochiyama, O.: Chemical thermodynamics of iron, part 1, vol. 13a. OECD Publications, Paris (2013)

    Google Scholar 

  6. https://srdata.nist.gov/solubility/

  7. https://www.nist.gov/mml/acmd/trc/thermodata-engine/srd-nist-tde-103b

  8. Dortmund Data Bank. http://www.ddbst.com

  9. Thermodynamic Reference Database (Thereda). https://www.thereda.de/en/

  10. DePriester, C.L.: Light-hydrocarbon vapor–liquid distribution coefficients–pressure–temperature–composition charts and pressure–temperature nomographs. Chem. Eng. Prog. Symp. Ser. 49, 1–43 (1953)

    CAS  Google Scholar 

  11. Marshall, R.W., Robertson, W.G.: Nomograms for the estimation of the saturation of urine with calcium oxalate, calcium phosphate, magnesium ammonium phosphate, uric acid, sodium acid urate, ammonium acid urate and cystine. Clin. Chim. Acta 72, 253–260 (1976)

    Article  CAS  PubMed  Google Scholar 

  12. Chirico, R.D., Frenkel, M., Magee, J.W., Diky, V., Muzny, C.D., Kazakov, A.F., Kroenlein, K., Abdulagatov, I.M., Hardin, G.R., Acree, W.E., Brenneke, J.F., Brown, P.L., Cummings, P.T., De Loos, T.W., Friend, D.G., Goodwin, A.R.H., Hansen, L.D., Haynes, W.M., Koga, N., Mandelis, A., Marsh, K.N., Mathias, P.M., McCabe, C., O’Connell, J.P., Padua, A.A.H., Rives, V., Schick, C., Trusler, J.P.M., Vyazovkin, S., Weir, R.D., Wu, J.: Improvement of quality in publication of experimental thermophysical property data: challenges, assessment tools, global implementation, and online support. J. Chem. Eng. Data 58, 2699–2716 (2013)

    Article  CAS  Google Scholar 

  13. Rowland, D., May, P.M.: Comment on “Volumetric properties of aqueous solution of lithium tetraborate from 283.15 to 363.15 K at 101.325 kPa” [J. Chem. Thermodyn. 120 (2018) 151–156] and its Corrigendum [J. Chem. Thermodyn. 123 (2018) 195–197]. J Chem Thermodyn. 128, 195–197 (2019)

  14. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., Nuttall, R.L.: The NBS tables of chemical thermodynamic properties—selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11(Suppl), 2 (1982)

    Google Scholar 

  15. Gamsjäger, H., Gajda, T., Saxena, S.K., Sangster, J., Voigt, W.: OECD Chemical Thermodynamics series. Chemical thermodynamics of tin, vol. 12. Elsevier, Amsterdam (2012)

    Google Scholar 

  16. May, P.M., Batka, D., Hefter, G., Königsberger, E., Rowland, D.: Goodbye to S2− in aqueous solution. Chem. Commun. (London) 54, 1980–1983 (2018)

    Article  CAS  Google Scholar 

  17. May, P.M.: JESS at thirty: strengths, weaknesses and future needs in the modelling of chemical speciation. Appl. Geochem. 55, 3–16 (2015)

    Article  CAS  Google Scholar 

  18. May, P.M., Murray, K.: JESS, a Joint Expert Speciation System—II. The thermodynamic database. Talanta 38, 1419–1426 (1991)

    Article  CAS  PubMed  Google Scholar 

  19. Smith, R.M., Martell, A.E., Motekaitis, R.J.: NIST Critical Stability Constants of Metal Complexes Database. Version 5.0. US Dept. Commerce, Gaithersburg, MD, USA (1998)

  20. May, P.M.: A simple, general and robust function for equilibria in aqueous electrolyte solutions to high ionic strength and temperature. J. Chem. Soc. Chem. Commun. 14, 1265–1266 (2000)

    Article  Google Scholar 

  21. May, P.M., Rowland, D.: JESS, a Joint Expert Speciation System—VI: thermodynamically-consistent standard Gibbs energies of reaction for aqueous solutions. New J. Chem. 42, 7617–7629 (2018)

    Article  CAS  Google Scholar 

  22. Rowland, D., May, P.M.: A Pitzer-based characterization of aqueous magnesium chloride, calcium chloride and potassium iodide solution densities to high temperature and pressure. Fluid Phase Equilib. 338, 54–62 (2013)

    Article  CAS  Google Scholar 

  23. Rowland, D.: Thermodynamically-robust Pitzer equations for volumetric properties of electrolyte solutions. Talanta 144, 90–92 (2015)

    Article  CAS  PubMed  Google Scholar 

  24. May, P.M., Rowland, D., Hefter, G., Königsberger, E.: A generic and updatable Pitzer characterization of aqueous binary electrolyte solutions at 1 bar and 25 °C. J. Chem. Eng. Data 56, 5066–5077 (2011)

    Article  CAS  Google Scholar 

  25. Rowland, D., May, P.M.: Thermodynamics of strong aqueous electrolyte solutions at t = 25 °C described by the Hückel equations. J. Chem. Eng. Data 59, 2030–2039 (2014)

    Article  CAS  Google Scholar 

  26. Rowland, D., May, P.M.: An investigation of Zdanovskii’s rule for predicting the water activity of multicomponent aqueous strong electrolyte solutions. J. Chem. Eng. Data 57, 2589–2602 (2012)

    Article  CAS  Google Scholar 

  27. Rowland, D., May, P.M.: An investigation of Harned’s rule for predicting the activity coefficients of strong aqueous electrolyte solution mixtures at 25 °C. J. Chem. Eng. Data 62, 310–327 (2017)

    Article  CAS  Google Scholar 

  28. Rowland, D., May, P.M.: A comparative investigation of mixing rules for property prediction in multicomponent electrolyte solutions. J. Solution Chem. 47, 107–126 (2018)

    Article  CAS  Google Scholar 

  29. Steiger, M., Voigt, W.: Solid–liquid metastable equilibria for solar evaporation of brines and solubility determination: a critical discussion. J. Solution Chem. (2018). https://doi.org/10.1007/s10953-018-0794-0

    Article  Google Scholar 

  30. Rowland, D.: Thermodynamic properties of the glycine + H2O system. J. Phys. Chem. Ref. Data 47, 023104 (2018)

    Article  CAS  Google Scholar 

  31. Rowland, D., May, P.M.: Comparison of the Pitzer and Hückel equation frameworks for activity coefficients, osmotic coefficients, and apparent molar relative enthalpies, heat capacities, and volumes of binary aqueous strong electrolyte solutions at 25 °C. J. Chem. Eng. Data 60, 2090–2097 (2015)

    Article  CAS  Google Scholar 

  32. May, P.M., Rowland, D., Königsberger, E., Hefter, G.: JESS, a Joint Expert Speciation System—IV: a large database of aqueous solution physicochemical properties with an automatic means of achieving thermodynamic consistency. Talanta 81, 142–148 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. Oakes, C.S., Simonson, J.M., Bodnar, R.J.: Apparent molar volumes of CaCl2(aq) to 250 °C, 400 bars and from molalities of 0.242 to 6.150. J. Solution Chem. 24, 897–916 (1995)

    Article  CAS  Google Scholar 

  34. Safarov, J.T., Najafov, G.N., Shahverdiyev, A.N., Hassel, E.: (p, ρ, T) and (p s, ρ s, T s) properties, and apparent molar volumes V ϕ of CaCl2(aq) at T = 298.15 to 398.15 K and at pressures up to p = 60 MPa. J. Mol. Liq. 116, 165–174 (2005)

    Article  CAS  Google Scholar 

  35. Beattie, J.A., Brooks, B.T., Gillespie, L.J., Scatchard, G., Schumb, W.C., Tefft, R.F.: Density (specific gravity) and thermal expansion (under atmospheric pressure) of aqueous solutions of inorganic substances and of strong electrolytes. In: Washburn, E.W. (ed.) International critical tables of numerical data, p. 51. McGraw–Hill, New York (1928)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren Rowland.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowland, D., May, P.M. Progress in Aqueous Solution Modelling: Better Data and Better Interfaces. J Solution Chem 48, 1066–1078 (2019). https://doi.org/10.1007/s10953-019-00871-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00871-5

Keywords

Navigation