Skip to main content
Log in

Kinetic and Thermodynamic Parameters of the Decomposition of Chromium Chromate in Different Gas Atmospheres

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Non-isothermal decomposition of chromium chromate hexahydrate, Cr2(CrO4)3−6H2O, was studied on heating up to 600°C in different dynamic atmospheres of N2, O2 and H2, using thermogravimetry (TG), derivative thermogravimetry (DTG) and differential scanning calorimetry (DSC). The results obtained at various heating rates (2–20°C min−1) were used to derive kinetic (E a and lnA) and thermodynamic (ΔH, C pand ΔS parameters.

It has been found that the activation energies of the dehydration and decomposition steps in N2 are generally larger than in H2 atmosphere, and the reverse is true for the enthalpy change of the decomposition. Thus, it has been concluded that the reductive decomposition (in H2) is easier than the thermal decomposition (in N2 or O2) of the chromate. Irrespective of the gas atmosphere applied, the eventual decomposition product was a mixture of α-Cr2O3 and non-crystalline chromate species, γ-Cr2O3+x. Above 400°C in H2 atmosphere, more deoxygenation of the non-crystalline chromate takes place at high rates of heating to give α-Cr2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Burwell, Jr., G. L. Haller, K. C. Taylor and J. F. Read, Adv. Catal., 20 (1969) 1.

    Google Scholar 

  2. E. Ellison, J. O. V. Oubridge and K. S. W. Sing, Trans. Faraday Soc., 66 (1970) 1004.

    Google Scholar 

  3. A. Ellison and K. S. W. Sing, JCS Faraday Trans. I, 74 (1987) 2807.

    Google Scholar 

  4. M. I. Zaki, N. E. Fouad, J. Leyrer and H. Knözinger, Appl. Catal., 21 (1986) 359.

    Google Scholar 

  5. N. E. Fouad, S. A. Halawy, M. A. Mohamed and M. I. Zaki, Thermochim. Acta, 329 (1999) 23.

    Google Scholar 

  6. R. C. Weast (Ed.), Handbook of Chemistry and Physics, 62nd Ed., CRC Press, Florida, 1982, J. W. Dodd and K. H. Tonge, Thermal Methods, Analytical Chemistry by Open Learning, B. R. Currell (Ed.), Wiley, Chichester 1987.

    Google Scholar 

  7. M. A. Mohamed and S. A. Halawy, J. Thermal Anal., 41 (1994) 147.

    Google Scholar 

  8. T. Ozawa, J. Thermal Anal., 7 (1975) 601.

    Google Scholar 

  9. C. Heald and A. C. K. Smith, Applied Physical Chemistry, McMillan Press, London 1982, p. 473.

    Google Scholar 

  10. M. A. Mohamed, A. K. Galwey and S. A. Halawey, Thermochim. Acta, 323 (1998) 27.

    Google Scholar 

  11. A. V. Nikolaev, V. A. Lagvinenko and L. I. Myachina, Thermal Analysis, Vol. 2, R. F. Schwenker and P. D. Garn (Eds), Academic Press, New York 1969, p. 779.

    Google Scholar 

  12. T. V. Rode, Oxygen compounds of chromium catalysts, in: Thermal Analysis, J. P. Redfern (Ed.), Izd. Akad. Nauk, SSSR, Moscow 1962, McMillan, London 1965, p. 122.

    Google Scholar 

  13. J. D. Carruthers, K. S. W. Sing and J. Fenerty, Nature, 213 (1967) 66.

    Google Scholar 

  14. N. E. Fouad, J. Therm. Anal. Cal., 60 (2000) 541.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halawy, S.A., Fouad, N.E., Mohamed, M.A. et al. Kinetic and Thermodynamic Parameters of the Decomposition of Chromium Chromate in Different Gas Atmospheres. Journal of Thermal Analysis and Calorimetry 65, 167–176 (2001). https://doi.org/10.1023/A:1011536920701

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011536920701

Navigation