Skip to main content
Log in

Conduction and Gas–Surface Reaction Modeling in Metal Oxide Gas Sensors

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

A phenomenological approach to the operation of metal oxide gas sensors, the Integrated Reaction Conduction (IRC) model, is proposed which integrates the gas-surface reactions with the electrical conduction process in a weakly sintered, porous metal oxide. An effective medium approximation is employed to relate the mesoscopic microstructure and the carrier depletion at the granular surface to the macroscopic electrical conduction. For a given ambient gas concentration and temperature, the electron concentration in the depletion layer is calculated from the gas-surface reaction kinetics. The adsorption and oxidation reaction energies of the gas sensing reactions are extracted for a TiO2-x CO sensor by comparing experimental data with three-dimensional plots of IRC model resistance as a function of the ambient [CO(g)] and temperature. The IRC model predicts novel properties of the gas sensor, including the sensitivity and the response range, which depend on the doping of the sensor material, the temperature, the grain size, and the geometry of the necks between grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Akbar and C.C. Wang, The Electrochemical Society Interface, 5, 41 (1990).

    Google Scholar 

  2. B.C.H. Steele, Editor, Electronic Ceramics (Elsevier, New York, 1991).

    Google Scholar 

  3. P.T. Moseley, Sensors and Actuators B, 6, 149 (1992).

    Google Scholar 

  4. A.M. Azad, S.A. Akbar, et al., J. Electrochem. Soc., 139, 3690 (1992).

    Google Scholar 

  5. R. N. Blumenthal, J. Coburn, J. Baukus, and W. M. Hirth, J. Phys. Chem. Solids, 27, 643 (1966).

    Google Scholar 

  6. J.A.S. Ikeda, Y.-M. Chiang, and C.G. Madras, in Ceramic Transitions, Vol. 24, Point Defects and Related Properties of Ceramics, T.O. Mason and J.L. Routbort, eds. (American Ceramic Society, Cincinnati, OH, 1991), p. 341.

    Google Scholar 

  7. J.A.S. Ikeda and Y.-M. Chiang, J. Am. Ceram. Soc., 76, 2437 (1993).

    Google Scholar 

  8. J.A.S. Ikeda, Y.-M. Chiang, A.J. Garratt-Reed, and J.B. Vandersande, J. Am. Ceram. Soc., 76, 2447 (1993).

    Google Scholar 

  9. C.R.A. Catlow and R. James, Proc. R. Soc. London A, 384, 157 (1982).

    Google Scholar 

  10. U. Balachandran and N.G. Eror, J. Mater. Sci., 23, 2676 (1988).

    Google Scholar 

  11. P.G. Harrison and M.J. Willett, J. Chem. Soc., Faraday Trans. 1, 85, 1921 (1989).

    Google Scholar 

  12. Y. Shimizu and M. Egashira, MRS Bulletin, 24, 18 (1999).

    Google Scholar 

  13. N. Taguchi, Japanese Patent Application No. 45-38200 (1962); Y. Shimizu, Y. Nakamura, and M. Egashira, Sensor and Actuators B, 13-14, 128 (1993).

    Google Scholar 

  14. T. Seiyama, A. Kato, K. Fujiishi, and N. Nagatani, Anal. Chem., 34, 1502 (1962); S. Saito, M. Miyayama, K. Koumoto, and H. Yanagida, J. Am. Ceram. Soc., 68, 40 (1985).

    Google Scholar 

  15. J.D. Plummer and P.B. Grifin, Nuclear Instruments and Methods in Physics Research B, 102, 160 (1995).

    Google Scholar 

  16. Y. Wang, Y. Liu, C. Ciobanu, and B. R. Patton, “Simulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors,” submitted to J. Am. Ceram. Soc.

  17. P.K. Dutta, et al., J. Phys. Chem. B, 103, 4412 (1999).

    Google Scholar 

  18. P.T. Moseley and D.E. Williams, in Techniques and Mechanisms in Gas Sensing, P.T. Moseley, J.O.W. Norris, and D.E. Williams, eds. (Adam Hilger, Bristol, England, 1991), p. 47; V. Lannto and P. Romppainen, Surf. Sci. 192, 243 (1987).

    Google Scholar 

  19. D.A.G. Bruggeman, Ann. Phys. (Leipzig), 24, 636 (1935); R. Landauer, AIP Conference Proceedings, 40, 2 (1977).

    Google Scholar 

  20. D.E. Williams, in Solid State Gas Sensors, P.T. Moseley and B.C. Tofield, eds. (Bristol, 1987), p. 92.

  21. L.Q. Chen and Y. Wang, JOM, 48, 13 (1996).

    Google Scholar 

  22. W. Gopel, G. Rocker, and R. Feierband, Phys. Rev. B, 28, 3427 (1983).

    Google Scholar 

  23. J.Watson, K. Ihokura, and G. Coles, Meas. Sci. Technol., 4, 711 (1993).

    Google Scholar 

  24. J. Steinfeld, J. Francisco, and W. Hase, Chemical Kinetics and Dynamics (Prentice-Hall, Inc., New York, 1989), p. 21.

    Google Scholar 

  25. K. Laidler, Chemical Kinetics (McGraw-Hill, Inc., New York, 1987), p. 263.

    Google Scholar 

  26. L.E. Reichel, A Modern Course in Statistical Physics (John Wiley & Sons, Inc., New York, 1998), p. 241.

    Google Scholar 

  27. E. Garrone, V. Bolis, B. Eubini, and C. Morterra, Langmuir, 5, 892 (1989); C. Morterra, J. Chem. Soc., Faraday Trans. 1, 84, 1617 (1988).

    Google Scholar 

  28. H.W. Gundlach and K.E. Heusler, Z. Phys. Chem. N.F., 119, 213 (1980).

    Google Scholar 

  29. S. Hishita, I. Mutoh, K. Koumoto, and H. Uanagida, Ceram. Int., 9, 61 (1983).

    Google Scholar 

  30. C.D. Terwilliger and Y.-M. Chiang, J. Am. Ceram. Soc., 78, 2045 (1995).

    Google Scholar 

  31. J.Y. Ying and A. Tschöpe, Chem. Eng. J., 64, 225 (1996).

    Google Scholar 

  32. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, and Denki Kagaju, 58, 1143 (1990).

  33. N.M. Beekmans, J. Chem. Soc. Faraday Trans. I, 74, 31 (1978).

    Google Scholar 

  34. M. Nakagawa and H. Mitsudo, Surf. Sci., 175, 157 (1986).

    Google Scholar 

  35. D.S. McLachlan, M. Blaszkiewicz, and R.E. Newnham, J.Am. Ceram. Soc., 73, 2187 (1990).

    Google Scholar 

  36. J.Y. Yi and G.M. Choi, J. Electroceramics, 3, 361 (1999).

    Google Scholar 

  37. J. Kovacik, Scripta. mater., 39, 153 (1998).

    Google Scholar 

  38. J.J. Wu and D.S. McLachlan, Physica A, 241, 360 (1997).

    Google Scholar 

  39. D.S. McLachlan, Physica B, 254, 249 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chwieroth, B., Patton, B.R. & Wang, Y. Conduction and Gas–Surface Reaction Modeling in Metal Oxide Gas Sensors. Journal of Electroceramics 6, 27–41 (2001). https://doi.org/10.1023/A:1011417619146

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011417619146

Navigation